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Abstract. The recursive growing neural gas algorithm (RGNG) is a
variant of the classic GNG that was specifically designed to model the
response behavior of groups of biological neurons. It was used successfully
to describe the behavior of entorhinal grid cells as well as entorhinal cells
that show grid like activity in response to saccadic eye movements. More
recently, the RGNG algorithm was integrated into a model of cortical
column function as part of an autoassociative memory cell. To facili-
tate future research involving the simulation of hundreds to thousands
of neuron groups we present an alternative algorithm to the RGNG as a
drop-in replacement in the context of neuron group modeling. The dif-
ferential growing neural gas (DGNG) is structurally less complex, more
efficient to compute, and more robust in terms of the input space repre-
sentation that is learned while retaining most of the RGNG’s important
characteristics. We provide a formal definition of the DGNG algorithm
and demonstrate its characteristics with a first set of experiments.

Keywords: Recursive Growing Neural Gas - Differential Growing Neu-
ral Gas - Representation Learning - Modeling of Neuron Groups.

1 Introduction

In a recent paper [12] we outlined a functional model of cortical columns [19,
18,1] that utilized a recursive growing neural gas (RGNG) as one of its core
components. More specifically, two reciprocally coupled RGNGs were used to
describe two groups of neurons within a single cortical column that together
form a local, autoassociative memory cell (AMC). Originally, we introduced the
RGNG algorithm [8,6] to model the behavior of entorhinal grid cells [3,4]. In
this earlier model a single RGNG was used to describe a single group of neurons,
effectively modeling one half of the later proposed cortical AMC.

Here we review the RGNG algorithm and introduce an algorithmic alterna-
tive that is structurally less complex, more efficient to compute, and more robust
in terms of the input space representation that is learned by the algorithm. Given
that our future research on cortical column models aims at simulating networks
of hundreds to thousands of cortical columns it seems prudent to improve and



2 J. Kerdels, G. Peters

optimize the model used so far in light of this new field of application, i.e., when
moving away from simulating single groups of neurons towards simulating entire
networks of neuron groups.

The next two sections provides a recapitulation of the RGNG algorithm
highlighting its core characteristics and its usage in the context of modeling the
response behavior of a group of neurons. Section 3 introduces a novel algorithm,
the differential growing neural gas, that addresses some of the shortcomings of
the RGNG while maintaining its main properties in the context of modeling
neuron groups. In section 4 the behavior of the introduced algorithm is demon-
strated and analyzed using the well known MNIST dataset [16]. Finally, section 5
concludes the paper and outlines aspects of future research.

2 RGNG Revisited

The recursive growing neural gas (RGNG) is an unsupervised learning algorithm
that learns a prototype-based representation of a given input space. Although
the RGNG is algorithmically similar to well known prototype-based methods
of unsupervised learning like the original growing neural gas (GNG) [17,2] or
self organizing maps [15], the resulting input space representation is significantly
different from common prototype-based approaches. While the latter use single
prototype vectors to represent local regions of input space that are pairwise
disjoint, the RGNG uses a sparse distributed representation where each point in
input space is encoded by a joint ensemble activity.

From a neurobiological perspective an RGNG can be interpreted as describ-
ing the behavior of a group of neurons that receives signals from a common input
space. Each of the neurons in this group tries to learn a coarse representation of
the entire input space while being in competition with one another. This coarse
representation consists of a limited number of prototypical input patterns that
are learned competitively and stored on separate branches of the neuron’s den-
dritic tree. The competitive character of the learning process ensures that the
prototypical input patterns are distributed across the entire input space and thus
form a coarse, pointwise representation of it. In addition to these intra-neuronal
processes the inter-neuronal competition on the neuron group level influences
the alignment of the individual neuron’s representations. More specifically, the
competition between the neurons favors an alignment of the individual represen-
tations in such a way that the different representations become pairwise distinct.
As aresult, the neuron group as a whole forms a dense representation of the input
space consisting of the self-similar, coarse representations of its group members.
The activity of individual neurons in such a group in response to a given input
is ambiguous as it cannot be determined from the outside which of the learned
input patterns triggered the neuron’s response. However, the collective activity
of all neurons in response to a shared input creates an activity pattern that is
highly specific for the given input since it is unlikely that for two different inputs
the response of all neurons would be exactly the same.
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A formal description of the RGNG algorithm is given in the next section.
It was adapted from [9]. The given description is independent of the RGNG’s
application in the aforementioned neurobiological context, which is described
later in section 2.2.

2.1 Formal Description
An RGNG g can be described by a tuple!:
g:=(U,C,0) € G,

with a set U of units, a set C' of edges, and a set 6 of parameters. Each unit u
is described by a tuple:

u:=(w,e) €U, weW :=R"UG, eeR,

with the prototype w, and the accumulated error e. Note that the prototype w
of an RGNG unit can either be a n-dimensional vector or another RGNG. Each
edge c is described by a tuple:

c:=(Vit)eC, VCUAI|V|=2, teN,

with the units v € V connected by the edge and the age t of the edge. The direct
neighborhood E,, of a unit u € U is defined as:

E,={k3(V,t) e C, V={u,k}, t € N}.
The set 6 of parameters consists of:
0 :={ep, en,r, N\, 7,0, 5, M }.
The behavior of an RGNG is defined by four functions. The distance function
D(z,y): WxW =R

determines the distance either between two vectors, two RGNGs, or a vector and
an RGNG. The interpolation function

I(z,y) : R"xRMHU(GxG) - W

generates a new vector or new RGNG by interpolating between two vectors or
two RGNGs, respectively. The adaptation function

Az, &,r) W xR"xR—->W

adapts either a vector or RGNG towards the input vector £ by a given fraction 7.
Finally, the input function

F(g,8):GxR*" > G xR

feeds an input vector £ into the RGNG ¢ and returns the modified RGNG as well
as the distance between ¢ and the best matching unit s; (BMU, see below) of g.
The input function F' contains the core of the RGNG’s behavior and utilizes the
other three functions, but is also used, in turn, by those functions introducing
several recursive paths to the program flow.

! The notation g.c is used to reference the element o within the tuple.
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F(g,£): The input function F is a generalized version of the original GNG al-
gorithm that facilitates the use of prototypes other than vectors. In particular, it
allows to use RGNGs themselves as prototypes resulting in a recursive structure.
An input £ € R™ to the RGNG g is processed by the input function F' as follows:

— Find the two units s; and sy with the smallest distance to the input &
according to the distance function D:

$1:= argmin ¢, ;s D(uww, §),

Sg 1= argmin e, (5,3 D(wsw, §).

Increment the age of all edges connected to s;p:

Act=1, c€g.C N s €caV.

If no edge between s; and s, exists, create one:
g:C < g.C U {({s1,82},0)}.
— Reset the age of the edge between s; and s to zero:

at <=0, ce€gC A sy,s5€aV.

Add the squared distance between £ and the prototype of s; to the accumu-
lated error of si:

Asiee = D(s1aw, €)°.
— Adapt the prototype of s; and all prototypes of its direct neighbors:

s1aw <= A(syaw, &, gubaep) ,
Spaw <= A(spaw, &, gubaey,) , Vs, € By, .
— Remove all edges with an age above a given threshold 7 and remove all units
that no longer have any edges connected to them:
9:.C <= ¢.C \ {c|c € g.C A ct > gb7},
gU <= gU \ {ulu€ gU N E, =0}.
— If an integer-multiple of g.f.)\ inputs was presented to the RGNG ¢ and
|g.U| < g.6.M, add a new unit u. The new unit is inserted “between” the
unit j with the largest accumulated error and the unit k with the largest

accumulated error among the direct neighbors of j. Thus, the prototype u.w
of the new unit is initialized as:

waw = I(jaw, kaw) , j = argmax ;¢ 1 (lue),

k = argmax ;cp, (l.€).
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The existing edge between units j and k is removed and edges between
units j and u as well as units v and k are added:
g:C < g.C \ {c|lc€ ¢g.C A j,k eV},
g'C = g'C U {({],U} ’ O) ) ({U, k} 70)} :
The accumulated errors of units j and k are decreased and the accumulated
error u.e of the new unit is set to the decreased accumulated error of unit j:
Aj.e = —gbuav - je, Ak.e = —g.b.a - kae,

Ul i = Ju€ .
— Finally, decrease the accumulated error of all units:
Aue = —g.0.0 - ue, Yu € g.U .

The function F' returns the tuple (g, dmin) containing the now updated RGNG g
and the distance dpi, := D(s1.w, £) between the prototype of unit s; and in-
put £. Note that in contrast to the regular GNG there is no stopping criterion
any more, i.e., the RGNG operates explicitly in an online fashion by continu-
ously integrating new inputs. To prevent unbounded growth of the RGNG the
maximum number of units 6.M was introduced to the set of parameters.

D(x,y): The distance function D determines the distance between two pro-
totypes x and y. The calculation of the actual distance depends on whether x
and y are both vectors, a combination of vector and RGNG, or both RGNGs:

Dprr(z,y) if =,y € R,
Dia.y) Dgr(z,y)if x € G Ay eR™,

Dgra(z,y) if z e R™ Ay €G,

Dea(z,y) if z,y € G.

In case the arguments of D are both vectors, the Minkowski distance is used:

Sl=

Drr(z,y) == (Z?:l |z; — yz‘\p) = (21,0, Tp),
Y= (y17"'7yn)a
peN.

Using the Minkowski distance instead of the Euclidean distance allows to adjust
the distance measure with respect to certain types of inputs via the parameter p.
For example, setting p to higher values results in an emphasis of large changes
in individual dimensions of the input vector versus changes that are distributed
over many dimensions [7]. However, in the common case the parameter is set to a
fixed value of 2 which makes the Minkowski distance equivalent to the Euclidean
distance.
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In case the arguments of D are a combination of vector and RGNG, the vector
is fed into the RGNG using function F' and the returned minimum distance is
taken as distance value:

DGR(l',y) = F(Ivy)'dminv
Dra(2,y) := Dar(y,x) -

In case the arguments of D are both RGNGs, the distance is defined to be the
pairwise minimum distance between the prototypes of the RGNGs’ units, i.e.,
single linkage distance between the sets of units is used:
D = i D(u.w, kaw) .
cc(,y) ueﬁ}}},l]fley_l] (uaw, kaw)

The latter case is used by the interpolation function if the recursive depth of
an RGNG is at least 2. In a neurobiological context (see 2.2) an RGNG-based
model typically has only a recursive depth of 1. Hence, the case is considered for
reasons of completeness rather than necessity. Alternative measures to consider
could be, e.g., average or complete linkage.

I(z,y): The interpolation function I returns a new prototype as a result from
interpolating between the prototypes x and y. The type of interpolation depends
on whether the arguments are both vectors or both RGNGs:

IRR($7y> if T,y € Rn?
I(x,y) = .
Iga(z,y)if 2,y €G.
In case the arguments of I are both vectors, the resulting prototype is the arith-
metic mean of the arguments:

r+vy
5
In case the arguments of I are both RGNGs, the resulting prototype is a new

RGNG a. Assuming w.l.o.g. that |z.U| > |y.U| the components of the interpo-
lated RGNG a are defined as follows:

IRR($7y) =

a:=I(z,y),
w = I(uaw, kaw) ,

a.U =< (w,0) Vu € .U, ,
k = argmin D(u.w, lLaw)

ley.U
dec € z.C
AN uk€cV
a.C = q ({{,m},0) A L= I(uw,-) [’

A maw = I(kaw,-)
a.d ;= z.0 .



Efficient Approximation of an RGNG 7

The resulting RGNG «a has the same number of units as RGNG z. Each unit
of a has a prototype that was interpolated between the prototype of the corre-
sponding unit in # and the nearest prototype found in the units of y. The edges
and parameters of a correspond to the edges and parameters of x.

A(xz,&,7): The adaptation function A adapts a prototype x towards a vector £
by a given fraction r. The type of adaptation depends on whether the given
prototype is a vector or an RGNG:

Ag(z, &) if © e R™,

Az, &, r) = _
Ag(z, & r)if z € G.

In case prototype x is a vector, the adaptation is performed as linear interpola-

tion:

Ag(z,&r) =1 —-r)x+r&.

In case prototype z is an RGNG, the adaptation is performed by feeding £ into
the RGNG. Importantly, the parameters ¢, and ¢,, of the RGNG are temporarily
changed to take the fraction r into account:

0 :=(r, r-zbie,, xbec,, 0.\, zboT,
xbur, 0.6, x.6.M),
z* = (U, z.C, 0%),
Ag(x, & r) = F(a*, &) .

Note that in this case the new parameter f.€, is used to derive a temporary €,
from the fraction r.

This concludes the formal definition of the RGNG algorithm.

2.2 RGNG-based neuron model

The RGNG algorithm as described above is used in the context of modeling a
group of neurons as follows: The recursive depth of the RGNG is limited to one,
which results in a two-layered structure with layers L1 and L2. The RGNG units
of layer L1 correspond to the individual neurons of the modeled group. Each
RGNG unit in L1 has a prototype that is a separate RGNG located in layer L2.
This separate RGNG represents the dendritic tree of the corresponding neuron.

The RGNG in layer L1 is parameterized by 6. All RGNGs in layer L2 are
parameterized by 6. Hence, the number of units (neurons) in L1 is set by 61.M.
The number of units (prototypical input patterns in one dendritic tree) per L1
unit is set by #2.M. Therefore, the input space representation learned by the
group of neurons as a whole utilizes 6,.M x 05.M prototypical input patterns
located in layer L2.

Inputs £ € R™ to the neuron model are processed through the input func-
tion F' of the RGNG in L1. The resulting call graph is depicted in figure 1. Given
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Fig. 1. Call graph for a single call to the input function F' of an RGNG with two layers
(L1, L2). Executing F in layer L1 results in 61.M (M1) calls to function D, a single call
to function A with learning rate 01.€5 (ebl), and O (01.M — 1) (M1’) calls to function A
with learning rate 0i.€, (enl), where O (61.M — 1) is the potential size of the direct
neighborhood of the corresponding BMU. The calls to D and A result in recursive
calls to F' on the next lower layer L2. Note that functions A temporarily change the
learning rates for their calls to F'. The recursion stops when a layer is reached where the
prototypes are vectors; here L2. Calls to function I while the RGNGs are still growing
are not shown since their computational cost is constant amortized. Figure adapted
from [6].

that functions D and A are linear in n, and function I is constant amortized
the computational cost to process a single, n-dimensional input by a two layer
RGNG is O (TL . 01.M . HQ-M).

After an input £ is processed the output of the modeled group of K := 6;.M

neurons is given as an ensemble activity a := (ag,...,ax—1) using a softmax
function:
edi
i = g1 -
Yo et
with )
N s1 — .
a; ::7(1—”i1§”2>, 1=0,...,.K -1,
sz — &ll2

and s!, s, being the best and second best matching prototypical input patterns
found in the dendritic tree of neuron ¢, which are identified during the com-
putation of function F' of the corresponding L2 RGNG. The factor « is used
to control the degree with which the softmax function emphasizes the largest
elements of the ensemble activity a. From a neurobiological perspective the pa-
rameter v can be interpreted as the strength of local inhibition that the neurons
with the highest activations exert on the other neurons of the group.

The RGNG-based neuron group model was used successfully to describe the
response behavior of typical entorhinal grid cells [6] as well as entorhinal cells
that show grid like activity in response to saccadic eye movements [9, 14]. Fur-
thermore, the model was analyzed regarding its resilience to noise [10, 13], and its
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ability to perform pattern separation [11]. Lastly, it was integrated into a model
of cortical column function as part of an autoassociative memory cell [12].

The aforementioned use cases of the RGNG-based neuron model focused on
describing the response behavior of single neuron groups. Building on our latest
work in modeling a cortical column [12] we aim to model large networks of corti-
cal columns in our future research, i.e., to model hundreds or thousands of neuron
groups. To this end it seems prudent to attempt to optimize the RGNG-based
model with respect to its complexity, robustness, and computational require-
ments.

3 RGNG Approximation

The way the RGNG-based neuron group model forms a distributed, prototype-
based representation of the group’s input space is the key aspect of this neuron
model. Two main processes are involved in the formation of this representation.
First, each neuron has to learn a representation of the entire input space, i.e.,
it has to distribute the prototypical input patterns it learns across the input
space rather than specialize in any one local region. Second, the representations
of individual neurons have to be aligned in such a way that they are pairwise
distinct and enable a disambiguation of inputs via the ensemble activity of the
neuron group. In the RGNG-based model these two processes depend both on
the dynamics encoded in input function F' and are controlled by the learning
rates 01.€p/4€, and Oa.€p /€, on layers L1 (group level alignment) and L2 (per
neuron learning), respectively. Although the underlying growing neural gas al-
gorithm is relatively robust regarding the choice of learning rates, it can still be
difficult to identify a set of learning rates that ensure both the distribution of
per-neuron prototypes across the input space and the alignment of the result-
ing representations such that the overall group-level representation of the input
space settles into a stable configuration.

Another important aspect of the RGNG-based model is its computational
complexity. For every input the algorithm has to calculate the distance of that
input to each prototypical input pattern of every neuron. Since the distance cal-
culation itself is not computationally demanding the RGNG algorithm becomes
effectively I/O bound on typical, modern computer systems. When scaling a
simulation from individual neuron groups to networks of hundreds or thousands
of groups, i.e., exceeding the cache capacity of the system in use the I/O bound-
edness of the algorithm becomes the main limiting factor of that simulation
regarding computation time.

To address both of these issues we present a novel variation of the growing
neural gas algorithm, the differential growing neural gas (DGNG), and propose
to use it as an approximation of the RGNG algorithm in the context of neuron
group modeling. The main idea of the DGNG algorithm is to partition the input
space into N regions, where N corresponds to the number of prototypical input
patterns that are learned by each neuron. This partition is learned by a top
layer growing neural gas with N units representing each input space region by a
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single prototype vector located at the center of that region. Each region is then
partitioned by separate sub-DGNGs into K sub-regions, where K corresponds
to the number of neurons in the modeled neuron group. The units of these
sub-DGNGs contain prototype vectors that represent a position relative to the
center prototype of the corresponding region, i.e., the prototype vectors encode
the respective difference between input and center prototype for a given input
space sub-region.

Compared to the RGNG-based model the correspondence between L1 units
and the neurons of the modeled neuron group has been removed in the DGNG.
Instead, the representation of each neuron is now distributed among the different
sub-DGNGs of the top layer DGNG units. More precisely, the i-th unit of sub-
DGNG j contains the j-th prototype of neuron i.

Whereas the distribution and alignment of prototypes in the RGNG algo-
rithm depend on a suitable choice of four different learning rates, the distribu-
tion and alignment of prototypes in the DGNG algorithm is directly enforced
by its structure, thereby reducing the dependence on suitable learning rates for
a particular problem instance. The partitioning of the input space in layer L1
ensures that the coarse input space representations of all neurons always cover
the entire input space, while the competition in the L2 sub-DGNGs ensures
that the representations learned by each neuron are pairwise distinct. In addi-
tion, the partitioning of the input space allows to reduce the number of distance
calculations per input significantly (see section 3.2).

Analogous to section 2, the next section will introduce the DGNG algorithm
independent of its use for modeling a group of neurons. Subsequently, section 3.2
will describe in more detail how the DGNG is used to describe the response
behavior of a group of neurons.

3.1 DGNG Formal Description
Like an RGNG a DGNG g can be described by a tuple:

g:=(U,C,0) € G,

with a set U of units, a set C' of edges, and a set 6 of parameters. Each unit u
is described by a tuple:

u:=(w,e,s) €U, weR" ecR, secGUY,

with the prototype w, the accumulated error e, and the sub-DGNG s. Note that
in contrast to the RGNG the prototype w of an DGNG unit is always a n-
dimensional vector, and the recursive structure is explicitly given by the sub-
DGNG s, which is empty at the lowest level.

Each edge c is described by a tuple:

c:=(Vit)eC, VCUAI|V|=2, teN,
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with the units v € V connected by the edge and the age t of the edge. The direct
neighborhood E, of a unit u € U is defined as:

E,={k3(V,t) e C, V={u,k}, t e N}.
The set 6 of parameters consists of:
0 :={ep, en, \, 7,0, 5, M}

In contrast to the RGNG the behavior of a DGNG can be described by a single
(recursive) input function F' that feeds an input vector £ into the DGNG g
and returns the modified DGNG as well as the prototype vector w*of the best
matching unit :

F(g,8): G xR" = G x R™.

Note the subtle difference that this input function does not return the minimum
distance to the input but rather the best matching prototype vector.

F(g,€): The input function F processes an input £ € R™ to the DGNG g as
follows:

— If g = @ return g and a zero vector 0 as best matching prototype,
else:
— Find the two units s; and s, with the smallest distance to the input &:

51 = argmin ¢ pl|waw — £,

$9 := arg min ueg_U\{Sl}Hu-w —&llp-
— Increment the age of all edges connected to si:

Act=1, c€g.C N sy €cV.
— If no edge between s; and s, exists, create one:
9:C <= g.C U {({s1,52},0)}.

— Reset the age of the edge between s; and s to zero:

at <=0, c€glC A sp,85€aV.

— Add the squared distance between & and the prototype of s to the accumu-
lated error of sp:
Asj.e = ||s1aw — §||]2D.

— Adapt the prototype of s; and all prototypes of its direct neighbors:

Aspaw = (£ = (81.w + F(81:8,€ — $1.w) «w*)) gubaeyp,
Aspaw = (£ — spaw) gubaey,.
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Note that in this step a recursion takes place. The sub-DGNG s of the best
matching unit s; is fed with the difference between the input £ and the
prototype w of s1, and the returned best matching prototype w* of the sub-
DGNG s is used to augment sj.w in the current adaptation step. Thus, the
sub-DGNG s can be understood as learning the details or different variations
of the more coarse representation stored in sj.w. The adaptation of the
neighboring units is performed without recursion to reduce computational
cost.

— Next, remove all edges with an age above a given threshold 7 and remove
all units that no longer have any edges connected to them:

9:.C < g.C \ {c|lc € g.C A it > gbu7},
gU <= gU \ {ujlu€ gU N E, =0}.
— If an integer-multiple of g.6.\ inputs was presented to the RGNG g and
|g:.U| < g«0.M, add a new unit u. The new unit is inserted “between” the
unit j with the largest accumulated error and the unit k with the largest

accumulated error among the direct neighbors of j. Thus, the prototype u.w
of the new unit is initialized as:

Jwt kaw

UW 5

, J = argmax ;¢ s (le),
k = argmax ;cp, (l€).

The existing edge between units j and %k is removed and edges between
units j and u as well as units u and k are added:

9:.C < g.C \ {c|lc€ ¢g.C A j,ke€cV},
9:C <= g.C U {({j,u}.,0), ({u,k},0)}.

The accumulated errors of units j and k are decreased and the accumulated
error u.e of the new unit is set to the decreased accumulated error of unit j:

Aje = —gdbua - jue, Ak.e = —g.b.a - kae,
Ual 1= Ju€ .
— Finally, decrease the accumulated error of all units:
Auwe = —g0.f - ue, Yu € gU .

The function F' returns the tuple (g, w*) containing the now updated DGNG g
and the prototype w* of the best matching unit s; w.r.t. input &.

This concludes the formal definition of the DGNG algorithm.

3.2 DGNG-based Neuron Model

When modeling a group of neurons with the DGNG algorithm the recursive
depth of the DGNG is limited to one like it is the case when using an RGNG.
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However, the resulting two-layered structure is interpreted differently. There ex-
ists no longer a direct correspondence between certain DGNG units and neurons
of the modeled neuron group. Instead, the prototypical input patterns learned
by an individual neuron are distributed across the sub-DGNGs of all DGNG
units of layer L1 and are composed as summation of the respective L1 unit’s
prototype vector and one prototype vector of the sub-DGNG’s L2 units. Hence,
the number of DGNG units in L1 corresponds to the number of prototypical
input patterns learned by one neuron in it’s dendritic tree, and the number of
DGNG units in each sub-DGNG, i.e., in layer L2 corresponds to the number of
neurons in the neuron group.

More specifically, given a group of K neurons that each learn N prototypical
input patterns the set of prototypes P' := {pf,...,pl_,} of neuron i within a
DGNG g is defined as:

p;- = UGW A UGS, U € gU, vy € ugesiU, j=0,..., N —1,

with ¢g.0.M = N and u.s.0.M = K, Yu € g.U. The computational complexity of
processing an input £ € R™ with the DGNG-based model is significantly reduced
compared to using an RGNG. Instead of requiring O (n - K - N) operations the
DGNG-based solution requires only O (n (K + N)) operations.

The ensemble activity a := (aog,...,ax—1) of a DGNG-based neuron model
is based on the sub-DGNGs of the best and second best matching DGNG units
s1 and s in L1 and uses, like the RGNG-based model, a softmax function:

el

Qi ‘= —
S e
j=0

with

di =y <1 _ Nspeseugiw = (€ - sl'“’“) . =0, K—1
Is2esattiut — (£ — s2uw)||2

As with the RGNG-based model the factor v is used to control the degree with

which the softmax function emphasizes the largest elements of the ensemble

activity a.

4 Results

In order to perform a first characterization of a DGNG-based neuron group
model we set up a model with 100 neurons, each of which had the capacity of
learning 16 prototypical input patterns. We trained the model with inputs from
the well-known MNIST dataset [16], which consists of 60000 grayscale images of
handwritten digits with a resolution of 28 x 28 pixels. As parameters we used:
f., = 0.01, 6., := 0.0001, 6.\ := 1000, 6.7 := 300, B.c := 0.5, 6.5 :=
0.0005, .M := {16,100}. We presented the MNIST training dataset repeat-
edly to the model until 10 million inputs were reached in total. After training
the response of the modeled neuron group to the MNIST test dataset (10000
handwritten digits that were not in the training dataset) was stored as a set of
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Fig. 2. Examples of learned prototypical input patterns. (a) Prototypes learned by the
DGNG in L1 that partition the input space. (b) Relative prototypes of a single modeled
neuron learned by different L2 DGNGs in the respective L1 input space regions. (c)
Summation of the prototypes shown in a and b resulting in the actual patterns that
are compared with the particular inputs.

ensemble activity vectors that were used in the following analysis. The ensem-
ble activity vectors were sampled multiple times for varying values of output
parameter vy (section 3.2).

The 16 prototypical input patterns learned by the DGNG in L1 that parti-
tion the input space are shown in figure 2a. As expected, the prototypes average
over large regions of input space and thus show only vague patterns of typical,
handwritten digits. Figure 2b shows the relative prototypes of a single mod-
eled neuron. Each of these prototypes were learned by a different L2 DGNG
associated with the corresponding L1 input space region and prototype. These
relative L2 prototypes learn the difference between the average L1 prototype of
their associated input space region and the more local input space region they
represent. Combined, the average L1 prototype and the relative L2 prototype
result in the patterns shown in figure 2c¢, which are those that are effectively
used to determine the particular distance to a given input pattern and derive
the activity of the particular neuron in response to that input. Figure 2c also
illustrates that neurons in this neuron model do not specialize in a single type
of input pattern, e.g., the digit 0, but respond to a variety of different input
patterns such that a disambiguation of different input patterns has to happen
at the neuron group level on the basis of the group’s ensemble activity.

In the outlined DGNG-based neuron group model the group’s ensemble ac-
tivity in response to an input is a vector a € R¥ with K being the number of
neurons in the modeled group. The output parameter v (section 3.2) controls
the sparsity of this activity vector a, which in turn determines the specificity
of the neuron group’s response to a given input. To analyze the effect the pa-
rameter v has on the sparsity of a we calculated the distribution of Gini Indices
of the ensemble activity vectors that were returned in response to the MNIST
test dataset. The resulting distribution as a function of 7 is shown in figure 3.
The Gini Index can be used as a measure for the sparsity of a vector [5]. As an
approximation, the value of the Gini Index can be intuitively understood as the
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Fig. 3. Distribution of Gini Indices of the ensemble activity vectors of the modeled
neuron group in response to the MNIST test dataset as a function of output parameter
gamma (section 3.2). Whiskers indicate upper and lower quartiles, circles and center
horizontal lines indicate mean and median of the distributions.

fraction of entries in a given vector that have low values (compared to the other
entries), i.e., a Gini Index of 0 corresponds to a vector that has similar values
in all of its entries whereas a Gini Index of 1 corresponds to a vector that has
one or only a few entries with values significantly higher than all other entries
of the vector.

The distribution shown in figure 3 illustrates that with increasing values of ~
the mean sparseness of the ensemble activity vectors steadily increases as well.
Considering the interpretation of v as the degree of local inhibition in the pro-
posed neuron model it becomes evident how important this local inhibition is
to the formation of a sparse ensemble code that represents a given input with
a sufficient degree of specificity. The ability to perform such a pattern separa-
tion was already a key characteristic of the RGNG-based neuron model [11]. To
investigate the DGNG-based model in that regard we compared the pairwise co-
sine similarities of the ensemble activity vectors that were generated in response
to the MNIST test dataset. Since the dataset provides labels for the ten differ-
ent digit classes it was possible to compare the cosine similarities for intra- and
inter-class inputs separately. Given that intra-class samples are likely to be more
similar to each other than inter-class samples this distinction of cases allows to
study the pattern separation abilities in more detail. In general it is expected
that the group of neurons is able to represent individual inputs distinctively in
both cases, although the task in the intra-class case is conceivably harder.

Figure 4 shows the resulting distributions of cosine similarities. In both cases
the ensemble activity vectors for values of v below 5 are very similar to each
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other and do not allow to distinguish the neuron group’s responses to different
inputs very well — again emphasizing the importance of local inhibition in this
neuron model. However, with increasing values of v (> 5), i.e., increasing local
inhibition, the ensemble activity rapidly becomes very specific. Interestingly, the
increase in specificity is not monotonic. The distributions for both intra-class and
inter-class samples exhibit a minimum at v ~ 7 and v ~ 5 to 15, respectively.
For these values of v the response of the neuron group to a given input £ is such
that very few to none of the other test inputs have a cosine similarity close to
one with respect to & while the spectrum of occurring, lower cosine similarity
values is wide. In contrast, for values of v > 15 the distinction between similar
or dissimilar inputs becomes much more pronounced. The vast majority of other
test inputs (note the logarithmic scale) exhibit cosine similarity values close to
zero in that case, i.e., the corresponding ensemble activity vectors become almost
orthogonal to each other.

From a neurobiological perspective the putative ability to shape the char-
acteristic of the neuron group’s input space representation just by the degree
of local inhibition alone is a fascinating possibility. It would allow a group of
neurons to dynamically switch between fine grained representations that enable
the differentiation of very similar inputs and coarse grained, clear-cut represen-
tations suitable for fast classification.

5 Conclusion

In this paper we presented a novel variant of the growing neural gas algorithm:
the differential growing neural gas (DGNG). We designed this new algorithm
as a drop-in replacement of the recursive growing neural gas (RGNG) in the
context of modeling the response behavior of neuron groups. Compared to the
old RGNG approach the new DGNG algorithm is more robust regarding the
formation of the group’s input space representation, is structurally less complex,
and is computationally more efficient. In addition, the results of our first analysis
of a DGNG-based neuron group model indicate that the model is able to retain
important characteristics of earlier RGNG-based models.

Our future research will focus on investigating the characteristics of the
DGNG algorithm further especially regarding its temporal stability, its capacity,
and its use in our cortical column model.
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Fig. 4. Histograms of pairwise cosine similarities between ensemble activity vectors of
the modeled neuron group in response to the MNIST test dataset. Figure (a) shows

while figure (b)
increasing values of -y lead to stronger pattern separation.
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