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A Possible Encoding of 3D Visual Space in
Primates

Jochen Kerdels and Gabriele Peters

FernUniversität in Hagen – University of Hagen,
Universitätsstrasse 1, D-58097 Hagen, Germany

Abstract. Killian et al. were the first to report on entorhinal neurons
in primates that show grid-like firing patterns in response to eye move-
ments. We recently demonstrated that these visual grid cells can be mod-
eled with our RGNG-based grid cell model. Here we revisit our previous
approach and develop a more comprehensive encoding of the presumed
input signal that incorporates binocular movement information and fix-
ation points that originate from a three-dimensional environment. The
resulting volumetric firing rate maps exhibit a peculiar structure of reg-
ularly spaced activity columns and provide the first model-based predic-
tion on the expected activity patterns of visual grid cells in primates if
their activity were to be correlated with fixation points from a three-
dimensional environment.

1 Introduction

Investigating the information processing that occurs on a neuronal level in deep
stages of the mammalian brain is a challenging task. Neurons in these regions of
the brain commonly process information that is highly aggregated and difficult to
correlate with external variables that are observable in an experimental setting.
A rare exception in this regard are so-called grid cells [8, 10]. The activity of these
neurons correlates in a regular and periodic fashion with the organism’s location
in it’s environment and thus facilitates experimental inquiry. Since their discov-
ery in the entorhinal cortex of rats cells with grid-like activity patterns were
found in several mammalian species (rats, mice, bats, and humans) and multiple
regions of the brain (entorhinal cortex, pre- and parasubiculum, hippocampus,
parahippocampal gyrus, amygdala, cingulate cortex, and frontal cortex) [8, 10,
4, 25, 6, 11]. In all reported cases the activity of the observed neurons correlated
with the organism’s location supporting the early and predominant interpre-
tation that grid cells are a functional component of a system for navigation
and orientation. Particularly, the relatively stable and periodic firing patterns
of grid cells are thought of to provide a kind of metric for space by means of
path integration [19]. However, recent observations[3, 2, 17, 23] indicate that the
firing patterns of grid cells are much more dynamic and adaptive than previ-
ously assumed questioning their utility as such a metric. Moreover, Killian et
al. [16] observed neurons with grid-like firing patterns in the entorhinal cortex



of primates whose activity does not correlate with the animal’s location but in-
stead with gaze-positions in the animal’s field of view. These new observations
challenge the original notion of grid cells as a specialized component for path
integration [19, 24, 9, 1, 5, 20] and suggest that the grid-like activity patterns may
reflect a more general form of information processing. To explore this alternative
hypothesis we developed a new computational model of grid cells based on the
recursive growing neural gas (RGNG algorithm), which describes the behavior of
grid cells in terms of principles of self-organization that utilize a form of compet-
itive Hebbian learning [14, 12]. We could demonstrate [12] that our RGNG-based
model can not only describe the basic properties of grid cell activity but can also
account for recently observed phenomena of dynamic grid pattern adaptation in
response to environmental changes [3, 2, 17, 23].

Furthermore, we recently showed [15] that our model can describe the behav-
ior of “visual” grid cells in primates as they were reported by Killian et al. [16].
However, the data presented by the latter is not as clean as comparable data
from, e.g., experiments with rats (see fig. 4). This difference may just be an
artefact of challenging recording conditions in primates or caused by a limited
amount of data, but it could also reflect a difference in the actual behavior of the
observed cells. Here we investigate this question further by extending our previ-
ously used two-dimensional input model into a three-dimensional version. The
following two sections summarize the RGNG-based grid cell model and revisit
the results of our recent investigation into modelling and simulation of visual
grid cells in primates [15]. Section 4 then introduces a three-dimensional input
model that is based on the efference copy of motor neuron populations that pu-
tatively control the binocular gaze direction. Section 5 presents the simulation
results we obtained using this new input model and shows how the results re-
late to the characteristics of the data published by Killian et al. [16]. Finally,
section 6 draws conclusions and provides a set of testable predictions for future
neuroscientific research.

2 RGNG-based Grid Cell Model

The predominant interpretation that grid cells are a functional component of a
system for navigation and orientation is reflected by the majority of conventional
grid cell models. Typically, they incorporate mechanisms that directly integrate
information on the velocity and direction of the respective animal. Requiring this
domain specific information as input renders these models incapable of describing
the behavior of other neurons with similar grid-like firing patterns but different
types of input signals like the visual grid cells observed by Killian et al. [16]. The
RGNG-based grid cell model avoids such domain specific dependencies. It is a
neuron-centric model in which neurons act in their “own interest” while being in
local competition with each other. Biological neurons receive thousands of inputs
from other neurons, and from the perspective of a single neuron these inputs
are just electrochemical signals that carry no domain specific information. The
entirety of these input signals and their possible values (i.e., states of activity)



constitute the input space of a neuron. Besides additional sources of information
such as neuromodulators the Umwelt of a neuron is primarily defined by the
structure of this input space. We hypothesize that neurons “want” to maximize
their activity in response to this Umwelt as recent findings indicate that neuronal
activity increases the direct glucose uptake of neurons [18]. Hence, from the
perspective of a “selfish” neuron being more active means getting more energy.
To this end, we assume that neurons are able to learn a limited number of
input patterns or prototypes within their dendritic tree such that encountering
any of these patterns will cause the neuron to become active. In that case,
maximizing activity translates into learning those input patterns that occur most
often while simultaneously trying to avoid learning near duplicate patterns which
would waste “dendritic memory” capacity. As a consequence, the set of learned
input patterns form a simple prototype-based representation of the input space
structure residing in the dendritic tree of the respective neuron. In addition, if
multiple neurons compete against each other via local inhibition they will form
input space representations that are pairwise distinct from each other given that
each competing neuron still wants to maximize it’s activity. In such a group
of competing neurons the individual simple representations will interleave in
such a way that a complex representation of the input space emerges that is
distributed over the entire group. In our model we use a two layer recursive
growing neural gas (RGNG) to describe both processes at once: the learning of
prototypes within individual cells as well as the simultaneous competition among
the cells in the group. Interestingly, in both cases the underlying dynamics follow
the same principles of self-organization utilizing a form of competitive Hebbian
learning.

Most importantly, the RGNG-based neuron model can operate on arbitrary
input spaces. For any input space the modeled group of neurons will try to learn
the structure of the particular input space as well as possible. If the activity
of a single modeled neuron is then correlated with a suitable external variable,
the individual firing fields that can be observed correspond to the individual
prototypes or input space patterns that the neuron has learned. The “locations”
of the firing fields in relation to the external variable are a pointwise mapping
between the learned input space structure and the value range of that particular
external variable. For instance, to observe the typical grid-like firing pattern of
grid cells the input patterns must originate from a two-dimensional, uniformly
distributed manifold in the input space and have to correspond to the location
of the organism in it’s environment. Notably, these basic requirements allow for
a multitude of possible input spaces for grid cells, which can then be tested
with respect to further observed properties like the dynamic adaptation of grid
patterns to environmental changes. Likewise, by choosing a suitable input space
it becomes possible to model observations of grid-like firing patterns in other
domains like the visual grid cells reported by Killian et al. [16] (see next section).
A formal description of the RGNG-based model is provided in the appendix. For
an in-depth characterization of the model we refer to our prior work [15, 12].



Fig. 1. Eye and orbit anatomy with motor nerves by Patrick J. Lynch, medical illus-
trator; C. Carl Jaffe, MD, cardiologist (CC BY 2.5). Extracted from [15].

3 Encoding of 2D Visual Space Revisited

Neurons with grid-like activity patterns were observed in several mammalian
species and multiple regions of the brain [8, 10, 4, 25, 16, 6, 11]. Among these find-
ings the observations of Killian et al. [16] stand out as they are the first to report
grid-like activity patterns that are not correlated with the organism’s location
but with gaze-positions in the field of view. We recently investigated if and how
these visual grid cells can be described by our RGNG-based neuron model [15].
In this section we revisit and summarize our results from this investigation.

We hypothesized that the observed neurons may receive an input signal that
originates as a so-called efference copy from the populations of motor neurons
that control the four main muscles attached to the eye (Fig. 1). In such a popu-
lation signal the number of active neurons corresponds to the degree with which
the particular muscle contracts. Hence, the signal would provide an indirect
measure of the gaze-position of an eye. We constructed a corresponding input
signal ξ := (vx0 , vx1 , vy0 , vy1) for a given normalized gaze position (x, y) by using
four concatenated d-dimensional vectors vx0 , vx1 , vy0 and vy1 :

vx0
i := max

[
min

[
1− δ

(
i+1
d − x

)
, 1
]
, 0
]
,

vx1
i := max

[
min

[
1− δ

(
i+1
d − (1− x)

)
, 1
]
, 0
]
,

vy0

i := max
[

min
[

1− δ
(
i+1
d − y

)
, 1
]
, 0
]
,

vy1

i := max
[

min
[

1− δ
(
i+1
d − (1− y)

)
, 1
]
, 0
]
,

∀i ∈ {0 . . . d− 1} ,

with δ = 4 defining the “steepness” of the population signal and the size d of
each motor neuron population.



Fig. 2. Artificial rate maps and gridness distributions of simulation runs that processed
input from a varying number d of presumed motor neurons per muscle (columns) that
control the gaze-position. All simulation runs used a fixed set of parameters (table 1)
and processed two million random gaze locations encoded as the activity of correspond-
ing motor neuron populations. Each artificial rate map was chosen randomly from the
particular set of rate maps and displays all of the respective neuron’s firing fields.
The gridness distributions show the gridness values of all neurons from the particular
neuron group. Gridness threshold of 0.4 indicated by red marks. Extracted from [15].

Using this input space encoding we conducted a series of simulation runs with
varying sizes d of the presumed motor neuron populations. Each run simulated
a group of 100 neurons with each neuron using 20 prototypes to learn an input
space representation1. The input consisted of two million, random gaze-positions
per simulation run encoded as described above. Based on the resulting neuron
activity and corresponding gaze-positions we constructed standard firing rate
maps that represent a correlation of these variables. The maps were constructed
according to the procedures described by Sargolini et al. [21] but using a 5 × 5
boxcar filter for smoothing instead of a Gaussian kernel as introduced by Sten-
sola et al. [22]. This conforms to the de facto standard of rate map construction
in the grid cell literature. The firing rate maps integrate activity and position in-
formation of 30000 time steps sampled from the end of a simulation run, which
corresponds to typical experimental trial durations in grid cell research, i.e.,
10 minutes recorded at 50 Hz. In addition, we calculated the gridness score for
each simulated neuron based on the constructed firing rate maps. The gridness
score is an established measure to assess how grid-like an observed activity pat-
tern is [21]. It ranges from −2 to 2 with scores greater zero indicating a grid-like
activity pattern. To classify an observed neuron as grid cell, recent publications
choose more conservative thresholds between 0.3 and 0.4.

Figure 2 summarizes the results of these simulation runs for motor neuron
populations of size d ∈ {5, 10, 20, 40} per eye muscle. Both the shown firing rate
maps as well as the gridness score distributions show that a significant propor-
tion of the simulated neurons form grid-like activity patterns in response to the

1 The full set of parameters used is given in the appendix (table 1).



input signal described above. Furthermore, the response of the neurons appears
to be robust over the entire range of population sizes that were investigated.
The fact that the activity of the simulated neurons forms a grid-like firing pat-
tern when correlated with a two-dimensional, external variable (gaze-position)
indicates, that the inputs themselves originate from a two-dimensional manifold
lying within the high-dimensional (d × 4) input space – which is unsurprising
in this case since we constructed the encoding of the input signal to have this
property (but see section 4 why this is only an indication in general).

The gaze-positions that were randomly chosen as input signals in the sim-
ulation runs cover the entire field of view and the resulting firing rate maps
show the entire input space representation that was learned by a single neuron
based on these inputs. As a consequence, a strong alignment of firing fields,
i.e., prototypes at the borders of the firing rate maps can be observed since the
borders of the firing rate maps coincide with the outer limits of the underly-
ing, low-dimensional input space manifold in this case. As it is unlikely that
experimental observations of natural neurons will cover the entire extent of an
underlying input space, we investigated how the partial observation of firing
fields may influence rate map appearance and gridness score distributions. To
this end we conducted a second series of simulation runs using the same set
of parameters as before with the exception of using 80 prototypes per neuron
instead of 20. Furthermore, we constructed additional firing rate maps for each
neuron that contain only one-quarter or one-sixteenth of the respective neuron’s
firing fields emulating a partial observation of natural neurons. Figure 3 shows
the results of this second series of simulation runs. The additional firing rate
maps that contain only a subset of firing fields display firing patterns that are
much more regular and periodic compared to the firing patterns shown in fig-
ure 2. The corresponding gridness score distributions support this assessment by
showing a larger proportion of simulated neurons with gridness scores above a
threshold of 0.4. This indicates that the distortions introduced by the alignment
of firing fields at the outer limits of the underlying input space manifold remain
local with respect to their influence on the grid-like structure of other regions.
Thus, natural neurons may receive signals from input space manifolds that are
only partially two-dimensional and evenly distributed. In such a case grid-like
firing patterns would only be observed if the experimental conditions happen to
restrict the input signals to these regions of input space. Any shift towards re-
gions with different properties would result in a distortion or loss of the grid-like
structure.

4 Encoding of 3D Visual Space

In our recent investigation on modeling visual grid cells [15] we argued, as sum-
marized above, that the firing rate map derived from the observation of a bio-
logical neuron would likely show only a subset of this neuron’s firing fields since
experimental conditions would typically not allow to probe the entire input space
of that neuron. Analyzing only a fraction of the firing fields of our simulated neu-



Fig. 3. Artificial rate maps and gridness distributions of simulation runs presented like
in figure 2, but with 80 prototypes per neuron and containing either all, one-quarter,
or one-sixteenth (rows) of the respective neuron’s firing fields. Extracted from [15].



Fig. 4. Example of a neuron with a grid-like activity pattern in the monkey as observed
by Killian et al. [16]. Left, plots of eye position (grey) and spikes (red) reveal non-
uniform spatial density of spiking. For clarity, only spikes corresponding to locations
of firing rate above half of the mean rate were plotted. The monkeys name and unit
number are indicated at the top. Middle, spatial firing-rate maps show multiple distinct
firing fields. Maps are colour coded from low (blue) to high (red) firing rates. The
maximum firing rate of the map is indicated at the top. Right, the spatial periodicity
of the firing fields shown against spatial autocorrelations. The colour scale limits are ±1
(blue to red), with green being 0 correlation. d.v.a., degrees of visual angle; g, gridness.
Reprinted by permission from Macmillan Publishers Ltd: Nature, Killian et al. [16],
copyright 2012.

rons showed an improvement in the overall regularity of the firing patterns and
a reduction of the influence of alignment artifacts located at the outer limits of
the underlying input space manifold. However, the activity patterns observed by
Killian et al. [16] differ from these simulation results. They appear to be even
less regular and “clean” in their grid-like structure (Fig. 4) as our simulated rate
maps of the entire visual field (Fig. 2). It is possible that the distortions in the
observed activity patterns are just artifacts that result from challenging record-
ing conditions in primates, or potential inaccuracies in the measurement of the
external variable (eye tracking); and in our previous investigation we assumed
that this was indeed the case. Yet, it is also possible that the distortions are no
artifacts and may reflect a more complex underlying input space structure.

To explore this alternative explanation we considered a more realistic input
space model that includes both eyes and stereoscopic vision. Instead of encoding
two-dimensional gaze-positions of a single eye we took random fixation points pf
in a three-dimensional view box (width: 400 cm× height: 250 cm× depth: 300 cm)
and derived the corresponding horizontal and vertical viewing angles for both
eyes at their respective locations. Allowed eye movement was restricted to a
typical range of 50◦ adduction (towards the nose), 50◦ abduction (towards the
temple), 60◦ infraduction (downwards), and 45◦ supraduction (upwards). Eyes
were positioned 6 cm apart at 200 cm × 125 cm × 0 cm. Fixation points outside
of the field of view of either eye as well as fixation points closer than 30 cm
were rejected and not processed. After determining the horizontal and vertical
viewing angles for each eye the angles were normalized to the interval [0, 1] and
encoded as presumed population signal from the respective eight motor neuron



populations (four per eye) as in our previous simulation experiments. A fixed
population size of 20 motor neurons was used resulting in a 160-dimensional
input space. We conducted a series of simulation runs with varying numbers
of prototypes {20, 40, 80, 160} per neuron. Each run simulated a group of 100
neurons that processed 6 million input patterns derived from randomly chosen
fixation points within the view box as described above. The full set of parameters
used is provided in table 2 in the appendix.

5 Results

To assess the outcome of the simulation runs we constructed for each neuron a
volumetric firing rate map that correlates the simulated neural activity with the
corresponding fixation points within the view box. Figure 5 shows one exemplary
firing rate map for each simulation run. The firing rate maps have a resolution of
3 cm×3 cm×3 cm, and a 5×5×5 boxcar filter adapted from the two-dimensional
version introduced by Stensola et al. [22] was applied for smoothing. The nor-
malized neuronal activity is color-coded from blue-transparent (low activity) to
red-opaque (high activity). The maps are oriented such that the eyes are located
at the center of the horizontal plane (width × height) looking upwards in the
positive direction of the depth dimension.

The most prominent feature visible in these volumetric firing rate maps are
columns of activity that radiate outwards from the location of the eyes. The
columns appear evenly spaced, having similar diameters, and approaching a
hexagonal arrangement with increasing depth. Columns at the outer limits of
the input space manifold appear thicker and elongated outwards. The activity
distribution within each column is non-homogeneous, but seems to never fall
below a level that remains significantly larger than the activity outside of the
column. In case of neurons with a number of 160 prototypes this continuity of
activity appears to weaken as some columns show stretches of very low activity.
This observation matches the expected increase in competition among individual
neurons caused by the increasing number of prototypes per neuron, i.e., multiple
neurons will compete for regions of input space within single columns.

In order to study the alignment of the activity columns with progressing
depth we extracted a series of horizontal slices through the volumetric firing
rate maps shown in figure 5. The resulting slices are shown in figure 6 with
each slice integrating a depth range of 30 cm. The increase in regularity of the
column alignment with increasing depth is clearly visible. The resulting patterns
at a depth of 240 cm (Fig. 6, last row) vary between more diagonally aligned
rectangular patterns in neurons with 20 and 40 prototypes to more hexagonal
patterns in neurons with 80 and 160 prototypes. At depths of about 180 cm
or less the outer limits of the underlying input space manifold determined by
the maximum viewing angles of the modeled eyes become visible in the slices.
Similarly to our previous results (Fig. 2) an alignment of the firing fields with
respect to these limits can be observed. In addition, the outer firing fields appear
larger and elongated outwards. This change in size and shape may in part be



Fig. 5. Volumetric firing rate maps derived from simulation runs with varying numbers
of prototypes {20, 40, 80, 160} per neuron. Each firing rate map was chosen randomly
from the respective set of neurons. The rate maps correlate the simulated neuronal
activity of a single neuron with the corresponding fixation point within the view box.
Eyes are located at the center of the width and height dimensions looking upwards in
the direction of the depth dimension. Normalized neuronal activity is color-coded from
blue-transparent (low activity) to red-opaque (high activity). Resolution of the firing
rate maps is 3 cm× 3 cm× 3 cm.

.

caused by cutting horizontally through columns that are angled outwards from
the center. However, if this would be the sole cause for the deformation we would
expect to see a gradual increase in the deformation of firing fields with respect
to their distance from the center, which is not observable in the slices.

The slices shown in figure 6 are also an approximation of the two-dimensional
firing rate maps we would expect to observe if an animal with forward-facing
binocular vision, like the macaque monkeys studied by Killian et al. [16], would
be given the task of watching images presented on a two-dimensional monitor in
front of them. In case of the experiments performed by Killian et al. the distance
between the monkeys and the monitor that displayed the images was 60 cm,



Fig. 6. Horizontal slices through the volumetric firing rate maps shown in figure 5.
Each slice integrates a depth range of 30 cm. Normalized neuronal activity is color-
coded from blue (low activity) to red (high activity). Regions with no data points are
drawn in white.

and the constructed firing rate maps covered 33◦ × 25◦ of visual angle. Values
for adduction, abduction, infraduction, and supraduction as well as distance
between the eyes in macaque monkeys was not provided by Killian et al., and
we were unable to acquire this information reliably from other sources. Thus,
we used common values for human eyes in our simulation experiments. Despite
this shortcoming, the comparison of the firing rate map provided by Killian et



al. [16] (Fig. 4) and the slices of volumetric firing rate maps shown in the first
rows of figure 6 shows some interesting structural similarities: In both cases the
inner firing fields are weaker in activity, less regular, and smaller in size, whereas
the outer firing fields are more pronounced, stronger in activity, and appear
elongated outwards.

6 Conclusions

Killian et al. [16] were the first to report on entorhinal neurons in primates that
show grid-like firing patterns in response to eye movements. We recently inves-
tigated how such a behavior could be modeled with our RGNG-based neuron
model and we were able to demonstrate that it is feasible in principle [15]. In
this paper we revisited our approach to modeling these neurons and provided
a more comprehensive encoding of the presumed input signal that incorporates
movement information from both eyes and fixation points that originate from
a three-dimensional environment. The resulting volumetric firing rate maps of
the simulated neurons exhibit a peculiar structure of regularly spaced activity
columns that are angled outwards from the presumed eye locations. To the best
of our knowledge these volumetric firing rate maps are the first model-based pre-
diction on the expected activity patterns of visual grid cells in primates if their
activity were to be correlated with fixation points from a three-dimensional en-
vironment.

In addition, horizontal slices through these volumetric rate maps show that
the alignment of the activity columns increases in regularity with increasing
distance from the eyes. Thus, for an experimental setup as it was used by Killian
et al. [16] we predict that the distance between subject and the presented stimuli
has a significant influence on the gridness of the observed activity patterns. A
possible modification of the experimental design to test this prediction would be
to use a video projector while placing the projection screen at various distances
keeping the horizontal and vertical viewing angles constant.

APPENDIX

Recursive Growing Neural Gas

The recursive growing neural gas (RGNG) has essentially the same structure as
the regular growing neural gas (GNG) proposed by Fritzke [7]. Like a GNG an
RGNG g can be described by a tuple2:

g := (U,C, θ) ∈ G,

with a set U of units, a set C of edges, and a set θ of parameters. Each unit u
is described by a tuple:

u := (w, e) ∈ U, w ∈W := Rn ∪G, e ∈ R,
2 The notation g�α is used to reference the element α within the tuple.



with the prototype w, and the accumulated error e. Note that in contrast to the
regular GNG the prototype w of an RGNG unit can either be a n-dimensional
vector or another RGNG. Each edge c is described by a tuple:

c := (V, t) ∈ C, V ⊆ U ∧ |V | = 2, t ∈ N,

with the units v ∈ V connected by the edge and the age t of the edge. The direct
neighborhood Eu of a unit u ∈ U is defined as:

Eu := {k|∃ (V, t) ∈ C, V = {u, k} , t ∈ N} .

The set θ of parameters consists of:

θ := {εb, εn, εr, λ, τ, α, β,M} .

Compared to the regular GNG the set of parameters has grown by θ�εr and θ�M .
The former parameter is a third learning rate used in the adaptation function A
(see below). The latter parameter is the maximum number of units in an RGNG.
This number refers only to the number of “direct” units in a particular RGNG
and does not include potential units present in RGNGs that are prototypes of
these direct units.

Like its structure the behavior of the RGNG is basically identical to that of a
regular GNG. However, since the prototypes of the units can either be vectors or
RGNGs themselves, the behavior is now defined by four functions. The distance
function

D(x, y) : W ×W → R

determines the distance either between two vectors, two RGNGs, or a vector and
an RGNG. The interpolation function

I(x, y) : (Rn × Rn) ∪ (G×G)→W

generates a new vector or new RGNG by interpolating between two vectors or
two RGNGs, respectively. The adaptation function

A(x, ξ, r) : W × Rn × R→W

adapts either a vector or RGNG towards the input vector ξ by a given fraction r.
Finally, the input function

F (g, ξ) : G× Rn → G× R

feeds an input vector ξ into the RGNG g and returns the modified RGNG as well
as the distance between ξ and the best matching unit (BMU, see below) of g.
The input function F contains the core of the RGNG’s behavior and utilizes the
other three functions, but is also used, in turn, by those functions introducing
several recursive paths to the program flow.



F (g, ξ): The input function F is a generalized version of the original GNG al-
gorithm that facilitates the use of prototypes other than vectors. In particular, it
allows to use RGNGs themselves as prototypes resulting in a recursive structure.
An input ξ ∈ Rn to the RGNG g is processed by the input function F as follows:

– Find the two units s1 and s2 with the smallest distance to the input ξ
according to the distance function D:

s1 := arg min u∈g�U D(u�w, ξ) ,

s2 := arg min u∈g�U\{s1}D(u�w, ξ) .

– Increment the age of all edges connected to s1:

∆c�t = 1, c ∈ g�C ∧ s1 ∈ c�V .

– If no edge between s1 and s2 exists, create one:

g�C ⇐ g�C ∪ {({s1, s2} , 0)} .

– Reset the age of the edge between s1 and s2 to zero:

c�t ⇐ 0, c ∈ g�C ∧ s1, s2 ∈ c�V .

– Add the squared distance between ξ and the prototype of s1 to the accumu-
lated error of s1:

∆s1�e = D(s1�w, ξ)
2
.

– Adapt the prototype of s1 and all prototypes of its direct neighbors:

s1�w ⇐ A(s1�w, ξ, g�θ�εb) ,

sn�w ⇐ A(sn�w, ξ, g�θ�εn) , ∀sn ∈ Es1 .

– Remove all edges with an age above a given threshold τ and remove all units
that no longer have any edges connected to them:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ c�t > g�θ�τ} ,
g�U ⇐ g�U \ {u|u ∈ g�U ∧ Eu = ∅} .

– If an integer-multiple of g�θ�λ inputs was presented to the RGNG g and
|g�U | < g�θ�M , add a new unit u. The new unit is inserted “between” the
unit j with the largest accumulated error and the unit k with the largest
accumulated error among the direct neighbors of j. Thus, the prototype u�w
of the new unit is initialized as:

u�w := I(j�w, k�w) , j = arg max l∈g�U (l�e) ,

k = arg max l∈Ej (l�e) .



The existing edge between units j and k is removed and edges between
units j and u as well as units u and k are added:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ j, k ∈ c�V } ,
g�C ⇐ g�C ∪ {({j, u} , 0) , ({u, k} , 0)} .

The accumulated errors of units j and k are decreased and the accumulated
error u�e of the new unit is set to the decreased accumulated error of unit j:

∆j�e = −g�θ�α · j�e, ∆k�e = −g�θ�α · k�e,
u�e := j�e .

– Finally, decrease the accumulated error of all units:

∆u�e = −g�θ�β · u�e, ∀u ∈ g�U .

The function F returns the tuple (g, dmin) containing the now updated RGNG g
and the distance dmin := D(s1�w, ξ) between the prototype of unit s1 and in-
put ξ. Note that in contrast to the regular GNG there is no stopping criterion
any more, i.e., the RGNG operates explicitly in an online fashion by continu-
ously integrating new inputs. To prevent unbounded growth of the RGNG the
maximum number of units θ�M was introduced to the set of parameters.

D(x, y): The distance function D determines the distance between two pro-
totypes x and y. The calculation of the actual distance depends on whether x
and y are both vectors, a combination of vector and RGNG, or both RGNGs:

D(x, y) :=


DRR(x, y) if x, y ∈ Rn,

DGR(x, y) if x ∈ G ∧ y ∈ Rn,

DRG(x, y) if x ∈ Rn ∧ y ∈ G,
DGG(x, y) if x, y ∈ G.

In case the arguments of D are both vectors, the Minkowski distance is used:

DRR(x, y) := (
∑n

i=1 |xi − yi|
p
)

1
p , x = (x1, . . . , xn) ,

y = (y1, . . . , yn) ,

p ∈ N.

Using the Minkowski distance instead of the Euclidean distance allows to adjust
the distance measure with respect to certain types of inputs via the parameter p.
For example, setting p to higher values results in an emphasis of large changes
in individual dimensions of the input vector versus changes that are distributed
over many dimensions [13]. However, in the case of modeling the behavior of
grid cells the parameter is set to a fixed value of 2 which makes the Minkowski
distance equivalent to the Euclidean distance. The latter is required in this



context as only the Euclidean distance allows the GNG to form an induced
Delaunay triangulation of its input space.

In case the arguments of D are a combination of vector and RGNG, the vector
is fed into the RGNG using function F and the returned minimum distance is
taken as distance value:

DGR(x, y) := F (x, y)�dmin,

DRG(x, y) := DGR(y, x) .

In case the arguments of D are both RGNGs, the distance is defined to be the
pairwise minimum distance between the prototypes of the RGNGs’ units, i.e.,
single linkage distance between the sets of units is used:

DGG(x, y) := min
u∈x�U, k∈y�U

D(u�w, k�w) .

The latter case is used by the interpolation function if the recursive depth of an
RGNG is at least 2. As the RGNG-based grid cell model has only a recursive
depth of 1 (see next section), the case is considered for reasons of completeness
rather than necessity. Alternative measures to consider could be, e.g., average
or complete linkage.

I(x, y): The interpolation function I returns a new prototype as a result from
interpolating between the prototypes x and y. The type of interpolation depends
on whether the arguments are both vectors or both RGNGs:

I(x, y) :=

{
IRR(x, y) if x, y ∈ Rn,

IGG(x, y) if x, y ∈ G.

In case the arguments of I are both vectors, the resulting prototype is the arith-
metic mean of the arguments:

IRR(x, y) :=
x+ y

2
.

In case the arguments of I are both RGNGs, the resulting prototype is a new
RGNG a. Assuming w.l.o.g. that |x�U | ≥ |y�U | the components of the interpo-
lated RGNG a are defined as follows:

a := I(x, y) ,

a�U :=

(w, 0)

∣∣∣∣∣∣∣∣∣
w = I(u�w, k�w) ,

∀u ∈ x�U,
k = arg min

l∈y�U
D(u�w, l�w)

 ,

a�C :=

({l,m} , 0)

∣∣∣∣∣∣∣∣∣∣

∃c ∈ x�C
∧ u, k ∈ c�V
∧ l�w = I(u�w, ·)
∧ m�w = I(k�w, ·)

 ,

a�θ := x�θ .



The resulting RGNG a has the same number of units as RGNG x. Each unit
of a has a prototype that was interpolated between the prototype of the corre-
sponding unit in x and the nearest prototype found in the units of y. The edges
and parameters of a correspond to the edges and parameters of x.

A(x, ξ, r): The adaptation function A adapts a prototype x towards a vector ξ
by a given fraction r. The type of adaptation depends on whether the given
prototype is a vector or an RGNG:

A(x, ξ, r) :=

{
AR(x, ξ, r) if x ∈ Rn,

AG(x, ξ, r) if x ∈ G.

In case prototype x is a vector, the adaptation is performed as linear interpola-
tion:

AR(x, ξ, r) := (1− r)x+ r ξ.

In case prototype x is an RGNG, the adaptation is performed by feeding ξ into
the RGNG. Importantly, the parameters εb and εn of the RGNG are temporarily
changed to take the fraction r into account:

θ∗ := ( r, r · x�θ�εr, x�θ�εr, x�θ�λ, x�θ�τ,

x�θ�α, x�θ�β, x�θ�M) ,

x∗ := (x�U, x�C, θ∗) ,

AG(x, ξ, r) := F (x∗, ξ)�x .

Note that in this case the new parameter θ�εr is used to derive a temporary εn
from the fraction r.

This concludes the formal definition of the RGNG algorithm.

Activity Approximation

The RGNG-based model describes a group of neurons for which we would like
to derive their “activity” for any given input as a scalar that represents the
momentary firing rate of the particular neuron. Yet, the RGNG algorithm itself
does not provide a direct measure that could be used to this end. Therefore, we
derive the activity au of a modelled neuron u based on the neuron’s best and
second best matching BL units s1 and s2 with respect to a given input ξ as:

au := e−
(1−r)2

2σ2 ,

with σ = 0.2 and ratio r:

r :=
D(s2�w, ξ)−D(s1�w, ξ)

D(s1�w, s2�w)
, s1, s2 ∈ u�w�U,

using a distance function D. This measure of activity allows to correlate the
response of a neuron to a given input with further variables.



Table 1. Parameters of the RGNG-based model used for the simulation runs in our
previous work [15]. Parameters θ1 control the top layer RGNG while parameters θ2
control all bottom layer RGNGs of the model.

θ1 θ2

εb = 0.04 εb = 0.01

εn = 0.04 εn = 0.0001

εr = 0.01 εr = 0.01

λ = 1000 λ = 1000

τ = 300 τ = 300

α = 0.5 α = 0.5

β = 0.0005 β = 0.0005

M = 100 M = {20, 80}

Table 2. Parameters of the RGNG-based model used for the simulation runs presented
in this paper (section 4).

θ1 θ2

εb = 0.004 εb = 0.001

εn = 0.004 εn = 0.00001

εr = 0.01 εr = 0.01

λ = 1000 λ = 1000

τ = 300 τ = 300

α = 0.5 α = 0.5

β = 0.0005 β = 0.0005

M = 100 M = {20, 40, 80, 160}

Parameterization

Each layer of an RGNG requires its own set of parameters. In case of our two-
layered grid cell model we use the sets of parameters θ1 and θ2, respectively.
Parameter set θ1 controls the main top layer RGNG while parameter set θ2
controls all bottom layer RGNGs. Table 1 summarizes the parameter values
used for the simulation runs presented in our previous work [15], while table 2
contains the parameters of the simulation runs presented in this paper. For a
detailed characterization of these parameters we refer to Kerdels [12].
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