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A Noise Compensation Mechanism for an
RGNG-based Grid Cell Model

Jochen Kerdels and Gabriele Peters

University of Hagen, Universitätsstrasse 1 , D-58097 Hagen, Germany

Abstract. Grid cells of the entorhinal cortex provide a rare view on the
deep stages of information processing in the mammalian brain. Comple-
mentary to earlier grid cell models that interpret the behavior of grid
cells as specialized parts within a system for navigation and orientation
we developed a grid cell model that facilitates an abstract computational
perspective on the behavior of these cells. Recently, we investigated the
ability of our model to cope with increasing levels of input signal noise as
it would be expected to occur in natural neurobiological circuits. Here we
investigate these results further and introduce a new noise compensation
mechanism to our model that normalizes the output activity of simu-
lated grid cells irrespective of whether or not input noise is present. We
present results from an extended series of simulation runs to characterize
the involved parameters.

1 Introduction

The parahippocampal-hippocampal region takes part in the deep stages of in-
formation processing in the mammalian brain. It is generally assumed to play a
vital role in the formation of declarative, in particular episodic, memory as well
as navigation and orientation. The discovery of grid cells, whose activity corre-
lates with the animal’s location in a regular pattern, facilitates a rare view on the
neuronal processing that occurs in this region of the brain [7, 9]. Complementary
to earlier computational models of grid cells that interpret the behavior of grid
cells as specialized parts within a system for navigation and orientation [18, 23,
8, 1, 5, 19] we introduced a new grid cell model that views the behavior of grid
cells as just one instance of a general information processing scheme [11, 10].
The model relies on principles of self-organisation facilitated by the recursive
growing neural gas (RGNG) algorithm. We could demonstrate [10, 12] that our
model can not only describe the basic properties of grid cell activity but also
recently observed phenomena like grid rescaling [3, 2] as well as grid-like activity
in primates that correlates with eye movements [14] instead of environmental
location.

In addition, we recently investigated the ability of our model to cope with
increasing levels of noise in it’s input signal as it would be expected to occur
in natural neurobiological circuits [13]. Even with noise levels up to 90% of the
input signal amplitude the model was able to establish the expected activity
patterns. However, with increasing levels of noise the average maximum activity



Fig. 1. Geometric interpretation of ratio r, which is used as a basis for an approxima-
tion of the modelled grid cell’s activity. Extracted from [13].

of the model’s output dropped by two orders of magnitude. Here we investi-
gate this aspect further and present a noise compensation mechanism that we
integrated in our grid cell model to normalize the average maximum output ac-
tivity irrespective of whether or not input noise is present. The following section
provides a short summary of our RGNG-based grid cell model, and section 3
revisits our previous results [13] and analyzes the effects of input noise further.
Subsequently, section 4 introduces our proposed noise compensation mechanism
and section 5 presents the results obtained using this mechanism over various
parameter ranges. Finally, section 6 draws conclusions and outlines future work.

2 RGNG-based Grid Cell Model

The RGNG-based grid cell model is a neuron-centric model in which neurons
act in their “own interest” while being in competition with each other. A bio-
logical neuron receives thousands of inputs from other neurons and the entirety
of these inputs and their possible values constitute the neuron’s input space. We
hypothesize that grid cells form a simple representation of their input space by
learning a limited number of input patterns or prototypes that reflect the input
space structure. Simultaneously, the competition among neurons in a local group
of grid cells ensures that the simple representations learned by the individual
cells are pairwise distinct and interleave in such a way that a complex repre-
sentation of the input space emerges that is distributed over the entire group
of neurons. We model this behavior by a two layer recursive growing neural gas
that describes both the learning of prototypes within individual cells as well as
the simultaneous competition among the cells in the group. Both processes are
based on the same principles of self-organization utilizing a form of competitive
Hebbian learning. For a formal description and an in-depth characterization of
the model we refer to previous work [13, 10].

Here we focus on the operation of individual grid cells in the model. Their
behavior is equivalent to that of a regular growing neural gas (GNG) as it was
introduced by Fritzke [6]. A GNG is a network of units that is able to learn the
topology of it’s input space. Each unit is associated with a reference vector or
prototype that represents a local region of the input space. The neighborhood



(a) (b)

Fig. 2. (a) Example trace of rat movement within a rectangular, 1 m×1 m environment
recorded for a duration of 10 minutes. Movement data published by Sargolini et al. [21].
(b) Color-coded firing rate map of a simulated grid cell ranging from dark blue (no
activity) to red (maximum activity). Extracted from [13].

relations of these local regions are reflected by the GNG network topology. In
contrast to the original notion of GNG units as individual neurons our model
interprets the GNG units as different dendritic subsections of a single grid cell.
Thus, we assume that competitive Hebbian learning can occur within the den-
dritic tree of a single neuron allowing the neuron to respond to multiple, different
input patterns and to facilitate the formation of a simple prototype-based rep-
resentation of the neuron’s input space.

The basic learning mechanism selects for every input ξ the best and second
best matching units (BMUs) s1 and s2 whose prototypes s1�w and s2�w are
closest to the input ξ according to a distance function D. The GNG network
is then updated by creating (or refreshing) an edge between s1 and s2 and the
prototype of the BMU s1 as well as the prototypes of all units connected to
s1 are adapted towards the input ξ. In addition, the output activity au of the
modelled grid cell u in response to the input ξ is determined based on the relative
distances of ξ towards s1�w and s2�w:

au := e−
(1−r)2

2σ2 ,

with σ = 0.2 and ratio r:

r :=
D(s2�w, ξ)−D(s1�w, ξ)

D(s1�w, s2�w)
,

using a distance function D. Figure 1 provides a geometric interpretation of the
ratio r. If input ξ is close to BMU s1 in relation to s2, ratio r becomes 1. If on
the other hand input ξ has about the same distance to s1 as it has to s2, ratio r
becomes 0.

Based on this measure of activity it becomes possible to correlate the simu-
lated grid cell’s activity with further variables, e.g., the recorded location of an



animal (Fig. 2a) in a typical experimental setup to study grid cells. Figure 2b
shows such a correlation as a firing rate map, which is constructed according to
the procedures described by Sargolini et al. [21] but using a 5 × 5 boxcar filter
for smoothing instead of a Gaussian kernel as introduced by Stensola et al. [22].
This conforms to the de facto standard of rate map construction in the grid cell
literature. Each rate map integrates position and activity data over 30000 time
steps corresponding to a single experimental trial with a duration of 10 minutes
recorded at 50Hz.

3 Noise Resilience Revisited

Typical neurons in the the parahippocampal-hippocampal region of the brain
have peak firing rates that range between 1Hz and 50Hz [9, 21, 4, 16]. Some pro-
portion of this firing rate is due to spontaneous activity of the corresponding
neuron. According to Koch [15] this random activity can occur about once per
second, i.e., at 1Hz. Hence, the proportion of noise in a normalized firing rate
resulting from this spontaneous firing can be expected to lie between 1.0 and
0.02 given the peak firing rates stated above.

We recently investigated the ability of the RGNG-based grid cell model to
cope with noise in it’s input signal that is caused by this spontaneous neural
activity [13]. Since the model uses a vector of normalized neuronal activity as
it’s input signal, the proportion of noise in each input dimension depends on the
assumed peak firing rate of the corresponding input neuron. Unfortunately, there
is no empirical data on the distribution of peak firing rates in the input signal
of biological grid cells. Thus, we assumed a uniform distribution and tested the
model with increasing levels ξn of noise reflecting assumed minimal peak firing
rates. For example, a maximum noise level of ξn = 0.1 corresponds to a minimal
peak firing rate of 10Hz, and a level of ξn = 0.5 corresponds to a minimal peak
firing rate of 2Hz in the input neurons.

The input signal used in the experiments was constructed by assuming that
the animal location is encoded by two ensembles of input neurons that operate
as one-dimensional ring attractor networks. In these networks a stable “bump”
of activity encodes a linear position in a given direction. If the animal moves in
that direction, the bump of activity is moved accordingly updating the encoded
position. Similar types of input signals for grid cell models were proposed in
the literature by, e.g., Mhatre et al. [17] as well as Pilly and Grossberg [20].
Formally, the input signal ξ := (vx, vy) was implemented as two concatenated
50-dimensional vectors vx and vy. To generate an input signal a position (x, y) ∈
[0, 1]× [0, 1] was read from traces (Fig. 2a) of recorded rat movements that were
published by Sargolini et al. [21] and mapped onto the corresponding elements
of vx and vy as follows:



vxi := max

(
1−

∣∣∣∣ i− bdx+ 0.5c
s

∣∣∣∣ ,
1−

∣∣∣∣d+ i− bdx+ 0.5c
s

∣∣∣∣ , 0

)
,

vyi := max

(
1−

∣∣∣∣ i− bdy + 0.5c
s

∣∣∣∣ ,
1−

∣∣∣∣d+ i− bdy + 0.5c
s

∣∣∣∣ , 0

)
,

∀i ∈ {0 . . . d− 1} ,

with d = 50 and s = 8. The parameter s controls the slope of the activity bump
with higher values of s resulting in a broader bump. Each input vector ξ :=
(ṽx, ṽy) was then augmented by noise as follows:

ṽxi := max[ min[ vxi + ξn (2Urnd − 1), 1] , 0] ,

ṽyi := max[ min[ vyi + ξn (2Urnd − 1), 1] , 0] ,

∀i ∈ {0 . . . d− 1} ,

with maximum noise level ξn and uniform random values Urnd ∈ [0, 1].

Using this type of input we ran a series of simulation runs with increasing
levels ξn of noise. Each run simulated a group of 100 grid cells with 20 dendritic
subsections per cell using a fixed set of model parameters1. Figure 3 summarizes
the results of these simulations. Each column corresponds to a single simulation
run and shows an exemplary rate map of a grid cell chosen randomly from the 100
simulated cells (top row), the average maximum activity (MX) and the average
minimum activity (MN) present in the rate maps of all simulated grid cells (below
the rate map), the distribution of gridness scores2 (middle row), and an activity
function plot that indicates which values of ratio r corresponds to the respective
average maximum activity (bottom row). The exemplary rate maps as well as
the gridness score distributions show that the RGNG-based grid cell model is
able to sustain the expected grid-like activity patterns despite increasing levels
of noise in it’s input signal reflecting the robustness of the underlying principle of
self-organisation. However, with increasing levels of noise the average maximum
output activity of the simulated grid cells drops by two orders of magnitude,

1 For a detailed description and motivation of all parameters we refer to [13].
2 The gridness score ([−2, 2]) is a measure of how grid-like the firing pattern of a

neuron is. Neurons with gridness scores greater 0.4 are commonly identified as grid
cell.



Fig. 3. Artificial rate maps (top row), gridness distributions (middle row), and ac-
tivity function plots (bottom row) of simulation runs with varying levels ξn of noise
(columns) added to the inputs. All simulation runs used a fixed set of parameters [13]
and processed location inputs derived from movement data published by Sargolini et
al. [21]. Each artificial rate map was chosen randomly from the particular set of rate
maps. Average maximum activity (MX) and average minimum activity (MN) across
all rate maps of a particular simulation given above gridness distributions. Gridness
threshold of 0.4 indicated by red marks. Values of ratio r at average maximum activity
(MX) given in blue. Insets show magnified regions of the activity function where MX
values are low. Extracted from [13].

though the difference between average maximum and average minimum output
activity is still at least two orders of magnitude for any tested noise level ξn.

The output activity au of a simulated grid cell u depends directly on the
ratio r, which characterizes the relative distances between an input ξ and the
prototypes of the best and second best matching units s1 and s2. Only if the
input ξ is much closer to the prototype s1�w than s2�w, the activity will approach
a value of 1. Otherwise, if the distances between ξ and s1�w as well as ξ and
s2�w are rather similar, the activity will be close to 0. This approximation of
grid cell activity assumes that the input signals to the model originate from a
sufficiently low-dimensional manifold in the high-dimensional input space. Only
if this condition is met it is likely that some of the inputs will match the par-



Fig. 4. Illustration of high-dimensional “dead zones” (blue-dotted spheres) surrounding
prototypes (black dots) that lie on a lower-dimensional manifold. The “dead zones”
grow with increasing levels of noise.

ticular best matching prototype closely resulting in a strong activation of the
corresponding grid cell. Adding noise to inputs from such a lower-dimensional
manifold moves the inputs away from the manifold in random directions. As
a consequence, each of the grid cell’s prototypes becomes surrounded with a
kind of “dead zone” for which it is unlikely that any input will originate from
it (Fig. 4). This rather unintuitive property of randomness in high-dimensional
space becomes more tangible if one considers the distribution of random points
that lie within the unit sphere. For a point to lie close to the center of this
sphere all of it’s coordinates must be close to zero. If the absolute value of only
one coordinate is large, i.e., close to one or negative one, the point will lie close
to the surface of the sphere. Thus, with increasing dimension it becomes more
and more unlikely for a random point that the absolute values of all of it’s co-
ordinates will be low. Likewise, it is equally unlikely that the high-dimensional
noise added to an input will not move the input away from it’s low dimensional
manifold, and hence move it away from the grid cell’s prototypes.

4 Noise Compensation

The results summarized above suggest that real grid cells should be able to
process inputs with low peak firing rates, that they may show a similar reduction
in activity when the proportion of noise in their inputs is high, and that they
should not suffer a degradation of their firing field geometry in the presence of
noise. To the best of our knowledge no experiments were conducted yet that
investigated the behavior of grid cells in response to (controlled) noise in their
input signals. Since grid cells do show a wide range of peak firing rates [9, 21, 4,
16], possible variations of noise in their input signals may provide an explanation
for these observations.



However, grid cells may also employ strategies to directly compensate for
noise, e.g., by changing electrotonic properties of their cell membranes [15]. To
account for this possibility we added a noise compensation mechanism to our
model that normalizes ratio r with respect to the level of noise. Like the RGNG-
based grid cell model itself the implemented noise compensation is a computa-
tional mechanism that is an abstract representation of this potential ability of
grid cells and does not relate to any specific neurobiological implementation. As
described above, the addition of noise to the inputs of the model results in “dead
zones” around the prototypes of each grid cell that effectively limit the maxi-
mum value of ratio r. To normalize r without apriori knowledge about the level
of noise that is present, it is necessary to identify and track the border region
of these “dead zones” around each prototype. For that purpose a buffer bN of
size N was added to each unit s of a grid cell’s GNG containing the N largest
values of ratio r encountered so far while s was the BMU. In addition, every en-
try of a buffer bN has an age associated with it that is increased every time the
simulated grid cell processes an input and the corresponding unit s is selected
as BMU. Once the age of a buffer entry reaches a given age threshold Amax, the
value is evicted from the buffer. This way, changes in the level of input noise
that influence the size of the “dead zones” can be tracked. Using this additional
information a normalized ratio r̂ can then be defined as:

r̂ := max

[
min

[
r

b̃N
, 1

]
, 0

]
,

with b̃N the median of all populated entries in buffer bN .

5 Results

We characterized the normalized ratio r̂ by conducting a series of simulation runs
that covered combinations of varying age thresholds Amax ∈ {50, 250, 750, 1500,
3000}, varying buffer sizes N ∈ {5, 11, 21, 41, 81}, and varying levels of noise ξn ∈
{0.1, 0.3, 0.7, 0.9}. In addition, we reran corresponding simulations without nor-
malizing ratio r to ensure that the input signal (including the random noise) was
identical to the other simulations. All simulation runs used the same set of pa-
rameters as the previous simulations reported above and used the same location
inputs derived from movement data published by Sargolini et al. [21]. However,
the section of movement data that was analyzed here stems from a different
experimental trial due to technical constraints of the simulation environment.
This change resulted in slight variations in the gridness score distributions of
the rerun results (compare figures 3 and 8).

Figures 5, 6, 7, and 8 summarize the simulation results of all simulation runs.
Figure 5 shows one exemplary rate map for each simulation run. The rate maps
were chosen randomly from one of the 100 grid cells per simulation. Figure 6
shows corresponding activity histograms that show the distribution of activity



Fig. 5. Randomly chosen exemplary rate maps of simulation runs with varying
age thresholds Amax ∈ {50, 250, 750, 1500, 3000} (rows), varying buffer sizes N ∈
{5, 11, 21, 41, 81} (columns), and varying levels of noise ξn ∈ {0.1, 0.3, 0.7, 0.9} (quad-
rants of 2 × 2 blocks). All simulation runs used the same set of parameters as the
simulation runs underlying the data presented in figure 3 and processed location in-
puts derived from movement data published by Sargolini et al. [21].

values present in all rate maps (100) within each simulation. Figure 7 provides
for each simulation run a histogram of gridness scores calculated based on the
corresponding firing rate maps. Lastly, figure 8 shows the results of the simulation
reruns with non-normalized ratio r for comparison.

The firing rate maps shown in figure 5 reflect the influence of the two parame-
ters Amax and N on the normalized ratio r̂ in an intuitive way. The age threshold



Fig. 6. Distributions of the activity values present in the firing rate maps of individual
simulation runs. The shown data corresponds to the simulation runs shown in figure 5.
The histograms range from 0 to 1.

Amax determines the duration for which a recently encountered large value of
non-normalized ratio r is kept in the buffer and used to determine the “dead
zone” boundary surrounding the corresponding prototype. With 20 dendritic
subsections, i.e., prototypes per grid cell and 30000 time steps per 10 minute
trial, each prototype will be BMU for about 1500 time steps per trial or 2.5 time
steps per second on average. Thus, with an age threshold of Amax = 50 recently
encountered large values of r are kept for about 20 seconds in the buffer before
they are evicted. Larger values of Amax prolong this time:



Amax = 50→ 20 sec ,
Amax = 250→ 100 sec ,
Amax = 750→ 300 sec ( 5 min) ,
Amax = 1500→ 600 sec (10 min) ,
Amax = 3000→ 1200 sec (20 min) .

Similarly, the buffer size N does not only define how many values of non-
normalized ratio r are used to estimate a “dead zone” boundary, but it also
implies how much time is needed to fill the buffer on average:

N = 5→ 2.0 sec,
N = 11→ 4.4 sec,
N = 21→ 8.4 sec,
N = 41→ 16.4 sec,
N = 81→ 32.4 sec.

In cases where the age threshold Amax is small and the buffer size N is large, the
encountered values of ratio r are evicted faster than the buffer can be filled. As a
consequence effectively all recent values of r are used to estimate the respective
“dead zone” boundary. This effect can be observed in the first row of figure 5.
With increasing buffer size the estimated “dead zone” boundary of each proto-
type moves towards the median of all encountered values of ratio r resulting in
enlarged firing fields that are separated by only thin regions of lower activity.
This overestimation of “dead zone” sizes is also reflected by the corresponding
activity distributions shown in the first row of figure 6. The distributions are
either unimodal or bimodal instead of being long-tail distributions as one would
expected in case of a typical grid cell firing pattern (compare Fig. 8, middle).
Especially in cases of high levels of noise (ξn ≥ 0.7) and larger buffer sizes
(N ≥ 21) the minimum activity of the simulated cells increases to levels where
the cell exhibits an unnatural continuous base level activity regardless of it’s
particular input.

With increasing age threshold Amax the time window in which the buffer
can be filled with values of ratio r that are actually among the highest values
that are likely to occur given the particular noise level increases. Consequently,
the quality of the estimation of the particular “dead zone” boundary increases
as well, which is reflected by decreasing sizes of firing fields (Fig. 5) and more
long-tail distributions of activity values (Fig. 6). The activity distributions reveal
that independent of a particular combination of age threshold and buffer size
the tails of the distributions decrease with increasing levels of noise. Thus, the
maximum activity of a simulated cell with normalized ratio r̂ still decreases with
noise, but the magnitude of this decrease is significantly lower compared to the
decrease when the activity is based on a non-normalized ratio r (figures 3 and
8). In fact, the decrease in maximum activity due to noise using the normalized
ratio r̂ now matches the observed variability of peak firing rates in biological
grid cells.



Fig. 7. Distributions of gridness scores calculated from the firing rate maps of indi-
vidual simulation runs. The shown data corresponds to the simulation runs shown in
figure 5. The histograms range from −1.5 to +1.5. Gridness score threshold of 0.4
indicated by red mark.

The influence of normalizing ratio r on the resulting gridness scores of the
simulated grid cells is inconclusive (Fig. 7). In general, there appears to be a pat-
tern where the gridness scores increase with low to medium levels of noise before
they decrease again when the levels of noise increase further. Small amounts of
noise may prevent the learning algorithm from getting stuck in local minima
and thus may result in hexagonal firing patterns that are more regular. How-
ever, some simulation runs (e.g., Amax = 750, N = 5) deviate from this pattern
and exhibit rather broad distributions of gridness score values at a noise level



Fig. 8. Randomly chosen exemplary rate maps (left), distributions of activity values
(middle), and distributions of gridness scores (right) from simulation runs with varying
levels of noise ξn ∈ {0.1, 0.3, 0.7, 0.9} (quadrants of 2 × 2 blocks) using no noise
compensation. All other parameters were identical to the simulation runs presented
in figures 5, 6, and 7.

of ξn = 0.7, but a clear correlation with the parameters age threshold or buffer
size is not recognizable. One likely explanation for the observed variability in
gridness score distributions is the alignment of grid cell firing patterns in the
RGNG-based grid cell model. In common with biological grid cells, a group of
grid cells modeled by the RGNG-based model align the rotation and spacing
of their firing patterns in a self-organizing manner. Depending on initial con-
ditions and the input presented so far this alignment process can get stuck in
a stable configuration that introduces irregularities in the otherwise hexagonal
firing patterns of the simulated grid cells (e.g., Amax = 1500, N = 41, ξn = 0.1 in
figure 5). As similar “defects” in the firing patterns of biological grid cells were
experimentally observed and documented by Krupic et al. [16], it is inconclusive
if this property of the RGNG-based model is a “bug” or a “feature”. In the grid
cell literature it is rather common to exclude the firing rate maps of cells with
gridness scores lower than a given threshold (around 0.3 to 0.4) from publication
resulting in a lack of knowledge about cells that are almost grid cells given their
firing rate maps.

6 Conclusions

We presented a noise compensation mechanism for our RGNG-based grid cell
model based on a dynamic normalization of the core measure used to derive the
activity of a simulated grid cell. The normalization is controlled by two parame-
ters, age threshold Amax and buffer size N , whose influence we characterized by
an extended series of simulation runs. The results indicate that the age thresh-
old parameter is more critical than the buffer size parameter. It should have
a value that translates to a sliding time window of at least 5 minutes (in the
context of the underlying experimental setup) in which unnormalized values are
collected and used to dynamically estimate the normalization factor needed for
the currently present noise level.

The proposed normalization procedure reduces the previously observed [13]
drop in the output activity of simulated grid cells in the presence of high levels



of input noise by one order of magnitude. The remaining reduction in output
activity matches the observed variability of peak firing rates in biological grid
cells. If there is a possible connection between the peak firing rates of grid cells
and the level of noise present in their input signal is an open question and remains
to be investigated.
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