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Abstract: The cortex of mammals has a distinct, low-level structure consisting of six horizontal layers that are vertically
connected by local groups of about 80 to 100 neurons forming so-called minicolumns. A well-known and
widely discussed hypothesis suggests that this regular structure may indicate that there could be a common
computational principle that governs the diverse functions performed by the cortex. However, no generally
accepted theory regarding such a common principle has been presented so far. In this position paper we
provide a novel perspective on a possible function of cortical columns. Based on our previous efforts to model
the behaviour of entorhinal grid cells we argue that a single cortical column can function as an independent,
autoassociative memory cell (AMC) that utilizes a sparse distributed encoding. We demonstrate the basic
operation of this AMC by a first set of preliminary simulation results.

1 INTRODUCTION

The mammalian cortex has a remarkably regular, low-
level structure. It is organized into six horizontal lay-
ers, which are vertically connected by local groups of
about 80 to 100 neurons (in primates) that form so-
called minicolumns. These minicolumns are in turn
connected by local, short-range horizontal connec-
tions forming cortical macrocolumns (sometimes re-
ferred to as just columns or modules) in a self-similar
fashion (Mountcastle, 1978; Mountcastle, 1997; Bux-
hoeveden and Casanova, 2002). This general pattern
of organization into layers and (mini)columns sug-
gests that there might be a common computational
principle that governs the diverse functions performed
by the cortex. Theories regarding such a common
principle cover a wide range of putative mechanisms
and models including, among others, an updated ver-
sion of the hierarchical temporal memory (HTM)
model (Hawkins et al., 2017), which postulates that
individual columns can learn predictive models of en-
tire objects by combining sensory data with a location
input that indicates the spatial origin of the respec-
tive data; a sparse distributed coding model (Rinkus,
2017) that relates the functions of macro- and mini-
columns by postulating that minicolumns enforce the
sparsity of a sparse distributed representation stored
and recognized by individual macrocolumns; or a cor-

tical column model based on predictability minimiza-
tion (Hashmi and Lipasti, 2009). Whether any of the
existing hypothesis regarding the potential function
of cortical columns pertains, or if there is any com-
mon computational principle at all remains controver-
sial (Horton and Adams, 2005).

In this paper we approach the question whether
the columnar structure of the cortex reflects a com-
mon computational principle by focusing on a puta-
tive core function of the cortical minicolumn that is
implemented by a specific subset of neurons while
leaving the overall function of the entire minicolumn
unspecified for now. Given the canonical connectiv-
ity of cortical principal cells shown in figure 1, we
argue that groups of layer 2/3 and upper layer 5 neu-
rons (L2/3 PC and L5 ITN in Fig. 1) form a local, au-
toassociative memory that builds the core functional-
ity of a minicolumn while all other neurons depicted
in figure 1 serve supporting functions, e.g., commu-
nication to subcerebral targets (L5 SPN), communica-
tion to long-range cortical targets (L6 CC), modula-
tion of sensory input or input from lower-order cortex
(L6 CT), or modulation of the autoassociative mem-
ory itself (L4 PC). We base this hypothesis on earlier
work directed at modeling and understanding of grid
cells located in layer 2/3 and layer 5 of the medial
entorhinal cortex (Fyhn et al., 2004; Hafting et al.,
2005). While grid cells are commonly viewed as part



Figure 1: Canonical connectivity of cortical principal cells.
Reprinted with permission from (Harris and Mrsic-Flogel,
2013). PC: principal cell, ITN: intratelencephalic neuron,
SPN: subcerebral projection neuron, CT: corticothalamic
neuron, CC: corticocortical neuron. Line thickness repre-
sents the strength of a pathway, question marks indicate
connections that appear likely but have not yet been directly
shown.

of a specialized system for navigation and orienta-
tion (Rowland et al., 2016), it can be demonstrated
that their behavior can also be interpreted as just one
instance of a more general information processing
scheme (Kerdels and Peters, 2015; Kerdels, 2016).
Here we extend this idea by generalizing and aug-
menting the previous grid cell model into an autoas-
sociative memory model describing the core function
of a cortical minicolumn.

The next section revisits the grid cell model
(GCM) upon which the proposed autoassociative
memory model will be built. At its core the GCM is
based on the recursive growing neural gas (RGNG)
algorithm, which will also be a central component
of the new model. Section 3 introduces a first set
of changes to the original GCM on the individual
neuron level that improve the long-term stability of
learned representations, and allow the differentiation
between processes occurring in the proximal and dis-
tal sections of the neuron’s dendritic tree. In section 4
these changes are then integrated into a full autoasso-
ciative memory model, which consists of two distinct
groups of neurons that interact reciprocally. Section 5
presents preliminary results of early simulations that
support the basic assumptions of the presented model.
Finally, section 6 discusses the prospects of the pro-
posed perspective on cortical minicolumns and out-
lines our future research agenda in that regard.

2 RGNG-BASED GRID CELL
MODEL

Grid cells are neurons in the entorhinal cortex of the
mammalian brain whose individual activity correlates
strongly with periodic patterns of physical locations
in the animal’s environment (Fyhn et al., 2004; Haft-
ing et al., 2005; Rowland et al., 2016). This prop-
erty of grid cells makes them particularly suitable for
experimental investigation and provides a rare view
into the behavior of cortical neurons in a higher-
order part of the brain. The most prevalent view
on grid cells so far interprets their behavior as part
of a specialized system for navigation and orienta-
tion (Rowland et al., 2016). However, from a more
general perspective the activity of grid cells can also
be interpreted in terms of a domain-independent, gen-
eral information processing scheme as shown by the
RGNG-based GCM of Kerdels and Peters (Kerdels
and Peters, 2015; Kerdels, 2016). The main structure
of this model can be summarized as follows: Each
neuron is viewed as part of a local group of neurons
that share the same set of inputs. Within this group the
neurons compete against each other to maximize their
activity while trying to inhibit their peers. In order to
do so, each neuron tries to learn a representation of its
entire input space by means of competitive Hebbian
learning. In this process the neuron learns to recog-
nize a limited number of prototypical input patterns
that optimally originate from maximally diverse re-
gions of the input space. This learned set of input pat-
tern prototypes then constitutes the sparse, pointwise
input space representation of the neuron. On the neu-
ron group level the competition among the neurons
forces the individual, sparse input space representa-
tions to be pairwise distinct from one another such
that the neuron group as a whole learns a joint input
space representation that enables the neuron group to
work as a sparse distributed memory (Kanerva, 1988).

The GCM uses the recursive growing neural gas
algorithm (RGNG) to simultaneously describe both
the learning of input pattern prototypes on the level
of individual neurons as well as the competition be-
tween neurons on the neuron group level. In contrast
to the common notion of modeling neurons as simple
integrate and fire units, the RGNG-based GCM as-
sumes that the complex dendritic tree of neurons pos-
sesses more computational capabilities. More specif-
ically, it assumes that individual subsections of a neu-
ron’s dendritic tree can learn to independently rec-
ognize different input patterns. Recent direct obser-
vations of dendritic activity in cortical neurons sug-
gest that this assumption appears biologically plausi-
ble (Jia et al., 2010; Chen et al., 2013). In the model



this intra-dendritic learning process is described by a
single growing neural gas per neuron, i.e., it is as-
sumed that some form of competitive Hebbian learn-
ing takes place within the dendritic tree. Similarly, it
is assumed that the competition between neurons on
the neuron group level is Hebbian in nature as well,
and is therefore modeled by analogous GNG dynam-
ics. For a full formal description and an in-depth
characterization of the RGNG-based GCM we refer
to (Kerdels and Peters, 2016; Kerdels, 2016). In the
following section we focus on describing our modifi-
cations to the original RGNG-based GCM.

3 EXTENDED NEURON MODEL

Although the neuron model outlined in the previous
section was conceived to describe the activity of en-
torhinal grid cells, it can already be understood as a
general computational model of certain cortical neu-
rons, i.e., L2/3 PC and L5 ITN in figure 1. However,
to function as part of our cortical column model we
modified the existing GCM with respect to a number
of aspects:

3.1 Ensemble Activity

In response to an input ξ the GCM returns an en-
semble activity vector a where each entry of a cor-
responds to the activity of a single neuron. Given a
neuron group of N neurons, the ensemble activity a is
calculated as follows: For each neuron n ∈ N the two
prototypical input patterns sn

1 and sn
2 that are closest

to input ξ are determined among all prototypical input
patterns In learned by the dendritic tree of neuron n,
i.e.,

sn
1 := argmin v∈In‖v−ξ‖2

sn
2 := argmin v∈In\{sn

1}
‖v−ξ‖2.

The ensemble activity a := (a0, . . . ,aN−1) of the
group of neurons is then given by

ai := 1−
‖si

1−ξ‖2

‖si
2−ξ‖2

, i ∈ {0, . . . ,N−1}, (1)

followed by a softmax operation on a. Thus, the ac-
tivity of each neuron is determined by the relative
distances between the current input and the two best
matching prototypical input patterns. If the input is
about equally distant to both prototypical input pat-
terns the activity is close to zero, and if the input is
much closer to the best pattern than the second best
pattern the activity approaches one. The competi-
tion among the neurons on the group level ensures

that for any given input only a small, but highly spe-
cific (Kerdels and Peters, 2017) subset of neurons will
exhibit a high activation resulting in a sparse, dis-
tributed encoding of the particular input.

Compared to the original GCM (Kerdels and Pe-
ters, 2016; Kerdels, 2016) we modified the activation
function (Eq. 1) to allow for a smoother response to
inputs that are further away from the best matching
unit s1 than the distance between s1 and s2, and we
normalized the ensemble output using the softmax op-
eration.

3.2 Learning Rate Adaptation

The original GCM uses fixed learning rates εb and εn,
which require to find a tradeoff between learning rates
that are high enough to allow for a reliable adapta-
tion and alignment of initially random prototypes and
learning rates that are low enough to ensure a rela-
tively stable long-term representation of the respec-
tive input space. We modified the original GCM in
that regard by introducing three learning phases that
shape the learning rates used by the GCM. During the
initial learning phase both εb and εn are kept at their
initial values (e.g., εb = εn = 0.01). The duration t1
(measured in # of inputs) of this first phase depends
on the maximum number of prototypes M and the in-
terval λ with which new prototypes are added to the
model1, i.e., t1 = 2Mλ. This duration ensures that the
RGNG underlying the GCM has enough time to grow
to its maximum size and to find an initial alignment
of its prototypes. The second learning phase is a short
transitional phase with a duration t2 = Mλ in which
both learning rates εb and εn are reduced by one order
of magnitude to allow the initial alignment to settle in
a more stable configuration. Up to this point the pro-
totypes learned by the individual neurons of the model
are likely to be similar as primary learning rate εb and
secondary learning rate εn are equal so far2. Begin-
ning with the last learning phase, which is open-ended
in its duration, only the secondary learning rate εn is
reduced once more by two orders of magnitude. This
asymmetric reduction of εn initiates a differentiation
process among the individual neurons that allows the
prototypes of each neuron to settle on distinct loca-
tions of the input space.

1Both M and λ are parameters of the RGNG used by the
original GCM.

2See (Kerdels, 2016) for details on how primary and sec-
ondary learning rates relate within an RGNG.



3.3 Handling of Repetitive Inputs

Since the GCM is a continuously learning model it
has to be able to cope with repetitive inputs in such
a way that its learned representation is not distorted
if it is exposed to a single repeated input. Without
adaptation a repeated input would correspond to an
artificial increase in learning rate. To handle such a
situation we adjust the learning rates εb and εn by an
attenuation factor ζ:

ζ = 0.1|s1|/10,

with |s1| the number of successive times prototype s1
was the best matching unit. The attenuation factor ζ

is applied when |s1|> 1.

3.4 Integration of Feedback Input

In order to use the GCM as part of our cortical col-
umn model, we modified the existing GCM to allow
the integration of feedback connections. In the cor-
tex such feedback connections originate from higher-
order regions (violet arrows in Fig. 1) and predom-
inantly terminate in layer 1 on the distal dendrites
of layer 2/3 and layer 5 neurons. To integrate these
feedback connections into the model we added a sec-
ondary GNG to the description of each neuron. With
this extension the dendritic tree of each neuron is now
modeled by two GNGs: a primary GNG that repre-
sents the proximal dendrites that process the main in-
puts to the neuron, and a secondary GNG that repre-
sents the distal dendrites that process feedback inputs.
Both GNGs can independently elicit the neuron to be-
come active when either GNG receives a matching in-
put. If both GNGs receive inputs simultaneously, the
output op of the primary GNG (determined by the ra-
tio shown in Eq. 1) is modulated by the output os of
the secondary GNG depending on the agreement be-
tween outputs op and os:

a∗ :=
1

1+ e−(op−φ)(1+γ(1−|op−os|))
,

with parameter γ determining the strength of the mod-
ulation and parameter φ determining at which activ-
ity level (Eq. 1) of op the output is increased or de-
creased, respectively. Typical values are, e.g., γ = 10
and φ = 0.5.

A second important relation between the primary
and the secondary GNG concerns learning of new
prototypical input patterns. The secondary GNG can
only learn when the primary GNG has received a
matching input that resulted in an activation of the
neuron, i.e., the learning rates εb and εn of the sec-
ondary GNG are scaled by the output of the primary

GNG in response to a current main input to the neu-
ron:

ε∗b := εb op,

ε∗n := εn op,

or by zero if there is no main input present. As a con-
sequence, the secondary GNG learns to represent only
those parts of the feedback input space that correlate
with regions of the main input space that are directly
represented by the prototypical input patterns of the
primary GNG. This way, the secondary GNG learns to
respond only to those feedback signals that regularly
co-occur with those main input patterns that were
learned by the primary GNG. One possible neurobio-
logical mechanism that could establish such a relation
between proximal and distal dendrites is the back-
propagation of action potentials (Stuart et al., 1997;
Waters et al., 2005).

Together, the primary and secondary GNG allow
a modeled neuron to learn a representation of its main
input space while selectively associating feedback in-
formation that may help to disambiguate noisy or dis-
torted main input or substitute such input if it is miss-
ing.

4 CORTICAL COLUMN MODEL

So far the extended neuron model describes a single
group of neurons that is able to learn a sparse, dis-
tributed representation of its input space and is able
to integrate additional feedback input. As such, the
group acts as a local, input-driven transformation that
maps input signals to output signals without maintain-
ing an active state, i.e., if no input is present, no out-
put will be generated. However, if two groups share
the same main input space but also receive the group
activity of each other as an additional input signal,
both groups would be able to maintain a stable active
state even when the main input signal vanishes. In-
stead of being stateless input-output transformations
the two groups would form an active autoassociative
memory cell (AMC) (Kanerva, 1988; Kanerva, 1992).
Given the canonical connectivity of cortical princi-
pal cells shown in figure 1 we argue that L2/3 PC and
L5 ITN constitute such a pair of reciprocally connected
neuron groups forming an AMC. Both groups share
a main input space via connections from the primary
thalamus and local L4 PC, while they also both receive
feedback input at their distal dendrites in layer 1 from
higher-order cortex and the thalamus3.

3These feedback connections motivated the extension
described in section 3.4.



The other neuron groups shown in figure 1 can be
interpreted as providing support for the AMC: The
outputs of both L2/3 PC and L5 ITN connect locally to
L5 SPN, which projects to subcerebral targets, e.g.,
motor centres, and non-locally to higher-order parts
of the cortex. The output of the lower group L5 ITN
makes an additional local connection to L6 CC, which
projects to long-range cortical targets, but also locally
to L6 CT, which in turn connects back to L4 PC and the
primary thalamus.

We propose that the described neural structure
constitutes a single cortical minicolumn. At its core
the minicolumn hosts a single autoassociative mem-
ory cell (L2/3 PC / L5 ITN) that is supported by neurons
regulating its activity (L4 PC), its input (L4 PC / L6 CT)
and its output (L5 SPN / L6 CC).

A key property of the described AMC is its abil-
ity to feed its output back into itself via the reciprocal
connections between the two neuron groups ( L2/3 PC
/ L5 ITN). This local feedback loop does not only allow
the AMC to stay active when the main input vanishes.
It also enables a form of attractor dynamics (Kan-
erva, 1988; Kanerva, 1992) where an initial, poten-
tially noisy or ambiguous input pattern can be itera-
tively refined to approach one of the stable, prototyp-
ical input patterns learned by the AMC. In addition,
this iterative process can be supported or modulated
by the feedback input integrated via the distal den-
drites of both neuron groups. On a cortex-wide level
these attractor dynamics might play an important role
to dynamically bind subsets of cortical minicolumns
into joint, temporarily stable attractor states.

5 PRELIMINARY RESULTS

As a first step towards implementing the cortical col-
umn model outlined in the previous section we simu-
lated a single AMC consisting of two neuron groups
a and b, which correspond to the two neuron groups
L2/3 PC and L5 ITN of figure 1. Each neuron group was
modeled by the extended GCM described in section 3
containing 25 neurons with 16 dendritic prototypes
each. Further parameters are given in table 1. As in-
put both groups received samples from the MNIST
database of handwritten digits (Lecun et al., 1998) re-
duced to a resolution of 16× 16 pixels concatenated
with the current ensemble activity of the other group.
Each MNIST input was repeated 10× in a row com-
bined in each case with the updated ensemble activ-
ity of the respective other neuron group allowing for
the co-occurrence of the original input with the other
group’s reaction to that input. In total, the simulated
AMC was presented with 20 million inputs corre-

Figure 2: Sixteen prototypes learned by a single neuron of
neuron group a. Each prototype consists of a 16× 16 rep-
resentation corresponding to the MNIST part of the input
(shown in gray) and a 5× 5 representation corresponding
to the group b ensemble activation part of the input (visual-
ized as color gradient from blue (low activation) to red (high
activation).

sponding to about 33 full presentations of the MNIST
training data set to the system.

Figure 2 shows the 16 dendritic prototypes learned
by a single neuron of group a after a total of 20 mil-
lion inputs. Like the input patterns the prototypes
consist of two parts: a 16× 16 representation corre-
sponding to the MNIST portion of the input and a
5× 5 representation corresponding to the ensemble
activation of neuron group b co-occurring with the
particular MNIST inputs. The MNIST part of the
prototypes indicate that the neuron is, as expected,
learning a sparse, pointwise representation of its en-
tire input space. While some prototypes exhibit clear
and distinct shapes that indicate that these prototypes
have already settled at stable locations in input space,
a few prototypes have less distinct shapes indicating
that these prototypes have not yet reached such sta-
ble locations. One important aspect to note is that
this neuron will exhibit a high activity for any of the
learned input patterns. As a consequence, looking just
at the activity of this individual neuron it is not pos-
sible to tell whether the input was a, e.g., “0” or “2”
or any of the other patterns represented by one of the
neuron’s prototypes.

A disambiguation of the input becomes only pos-
sible when observing the ensemble activity of an en-
tire neuron group, i.e., the representation of the input
is distributed across the entire group. No individual
neuron encodes for just a single input. Such ensem-
ble activities are captured by the ensemble part of the
prototypes and show, in this case, the average ensem-
ble activity of group b in response to the respective
MNIST input captured by the MNIST part of the pro-
totypes. The ensemble activities of group b shown in
figure 2 show that each input pattern evokes a distinct



Figure 3: Twenty examples of learned prototypes from dif-
ferent neurons of group a that represent numbers of similar
shape. Visualization as in Fig. 2.

pattern of ensemble activity allowing to disambiguate
the different input patterns. In case of already sta-
ble prototypes it can also be seen, that the ensemble
activity tends to be sparse with only a few neurons ex-
hibiting a strong activation in response to a particular
input.

One interesting question regarding such a sparse,
distributed representation is the degree of variation
in this ensemble code if very similar inputs are pro-
cessed. Figure 3 shows twenty examples of dendritic
prototypes from different neurons of group a that rep-
resent numbers of similar shape. The captured en-
semble activities of group b indicate that the similar-
ity of activation patterns appears to match well with
the similarity of the corresponding MNIST patterns.
Even in cases with an overall low activation like the
responses to the number “8” (third row), the corre-
sponding ensemble codes appear similar.

These first tentative results indicate, that the pro-
posed model appears to be able to learn a sparse, dis-
tributed representation of its main input space (here
the MNIST set), while simultaneously learning the
ensemble codes of an accompanying group of neu-
rons that operates on the same input space.

6 CONCLUSION

The cortical column model outlined in this paper is
still in a very early stage. Yet, it combines multiple,
novel ideas that will guide our future research. First,
the RGNG-based, unsupervised learning of a sparse,
distributed input space representation utilizes a clas-
sic approach of prototype-based learning in a novel
way. Instead of establishing a one-to-one relation be-

tween a learned representation (prototype) and a cor-
responding region of input space, it learns an ensem-
ble code that utilizes the response of multiple neurons
(sets of prototypes) to a given input. The presented
preliminary results indicate that learning such an en-
semble code appears feasible. Our future research in
this regard will focus on improving our understanding
of the resulting ensemble code, as well as improving
the RGNG algorithm in terms of learning speed and
robustness w.r.t. a continuous learning regime.

Second, the idea of reciprocally connecting two
neuron groups that process a shared input space en-
ables the creation of an autoassociative memory cell
(AMC) that is able to maintain an active state even in
the absence of any input. In addition, such an AMC
may exhibit some form of attractor dynamics where
the activities of the two, reciprocally connected neu-
ron groups self-stabilize. A precondition for such an
AMC is the groups’ ability to learn the ensemble code
of the respective other group. The presented prelim-
inary results indicate that this is possible. Our future
research will focus on understanding the characteris-
tics of the dynamics of such an AMC, e.g., in response
to various kinds of input disturbances.

Third, the outlined cortical column model sug-
gests that the cortex may consist of a network of au-
toassociative memory cells that influence each other
via feedback as well as feedforward connections
while trying to achieve locally stable attractor states.
In addition, further cortical circuitry may modulate
the activity of individual cortical columns to facilitate
competition among cortical columns or groups of cor-
tical columns on a more global level, which may then
lead to the emergence of stable, global attractor states
that are able to temporarily bind together sets of corti-
cal columns. In this context our research is still in its
infancy and will focus on implementing a first version
of a full cortical column model that can then be tested
in small hierarchical network configurations, e.g., to
process more complex visual input.
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APPENDIX

Parameterization

The neuron groups modeled by the extended GCM
described in section 3 use an underlying, two-layered
RGNG. Each layer of an RGNG requires its own set
of parameters. In this case we use the sets of parame-
ters θ1 and θ2, respectively. Parameter set θ1 controls
the inter-neuron level of the GCM while parameter
set θ2 controls the intra-neuron level. Table 1 sum-
marizes the parameter values used for the simulation
runs presented in this paper. For a detailed charac-
terization of these parameters we refer to (Kerdels,
2016).

Table 1: Parameters of the RGNG-based, extended GCM
used for the preliminary results presented in section 5. For
a detailed characterization of these parameters we refer to
the appendix and (Kerdels, 2016).

θ1 θ2

εb = 0.04 εb = 0.01
εn = 0.04 εn = 0.01
εr = 0.01 εr = 0.01
λ = 1000 λ = 1000
τ = 100 τ = 100
α = 0.5 α = 0.5
β = 0.0005 β = 0.0005

M = 25 M = 16
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