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Analysis of High-Dimensional Data
Using Local Input Space Histograms

Jochen Kerdels∗, Gabriele Peters

University of Hagen - Faculty of Mathematics and Computer Science
Human-Computer Interaction

Universitätsstrasse 1, D-58084 Hagen, Germany

Abstract

The idea of local input space histograms was recently introduced as a means to

augment prototype-based vector quantization methods in order to gather more

information about the structure of the respective input space. Here we investi-

gate the utility of this new idea for analysing and clustering high-dimensional

data. Our results demonstrate, that the additional information gained about

the input space structure can be used to enable and improve visualization and

hierarchical clustering. Furthermore, we show that contrary to common view

the Minkowski distance with p > 1 can be a meaningful distance measure for

high-dimensional data.

Keywords: Local Input Space Histograms, Prototype-based Vector

Quantization, Growing Neural Gas, Curse of Dimensionality, Minkowski

Distance

1. Introduction

The analysis of data on a large scale is a challenging task. Commonly there

is only few apriori knowledge available about structures contained within the

data, e.g., information about possible classes the data could be partitioned into.

In such a case methods that utilize forms of unsupervised competitive learning5
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like the self-organizing map (SOM, [1]) or neural gas (NG, [2]) can be used to

discover potential structures in the data. Both, the SOM and NG are prototype-

based vector quantization methods that use a set of prototypes to cover the

particular input space as well as possible, i.e, to minimize the quantization

error based on a given dissimilarity measure.10

If there is little information about the structure of the data the euclidian

distance is often choosen as a “default” dissimilarity measure. In that case the

individual prototypes can only represent local regions of the input space as con-

vex polyhedrons and more complex structures must be approximated piecewise

by multiple prototypes. In order to gather more information about the input15

space structure between prototypes the idea of local input space histograms [3]

was introduced recently. As a proof of concept it has been shown that aug-

menting a growing neural gas (GNG, [4]) with local input space histograms can

improve the discovery of non-convex clusters in two-dimensional datasets.

In this paper we investigate the utility of local input space histograms for20

analysing and clustering high-dimensional data. Section 2 introduces the meth-

ods and materials used in the subsequently described experiments. In particular,

the section describes how a prototype-based vector quantization method – here

a GNG – can be augmented by local input space histograms. In section 3 the

behavior of local input space histograms is analysed for high-dimensional ran-25

dom data as well as high-dimensional color histogram data. Section 4 discusses

a number of interesting aspects of our results. Finally, a short conclusion and

suggestions for further research are provided in section 5.

2. Materials and methods

Growing Neural Gas Revisited. To investigate the utility of local input space30

histograms for the analysis of high-dimensional data we extended a GNG as an

exemplary prototype-based method. The GNG is a topology representing net-

work [5], i.e., it uses a data-driven growth process to approximate the topology

of the input space instead of using a fixed network topology like, e.g., a SOM
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does. Here we summarize the operation of the growing neural gas algorithm as35

described by Fritzke [4]. The growing neural gas is a network that consists of a

set A of units and a set C of edges. Each unit a ∈ A can be described by a tu-

ple1 (w, e) with the prototype w ∈ Rn, n being the dimension of the input space,

and the accumulated error variable e ∈ R. Each edge c ∈ C can be described

by a tuple (a, b, t) with the units a, b ∈ A ∧ a 6= b that are connected by the40

edge and the variable t ∈ N which stores the current age of the edge. The direct

neighborhood Da of a unit a is defined as Da := {b|∃ (a, b, t) ∈ C, b ∈ A, t ∈ N}.

The network is initialized with two units that have random prototypes and ac-

cumulated error variables set to zero.

A given input ξ ∈ Rn is processed by the network in the following way:45

• Find the two units s1 and s2 whose prototypes are closest to the input ξ:

s1 := argmin
{
a(1) − ξ|a ∈ A

}
, s2 := argmin

{
a(1) − ξ|a ∈ A \ {s1}

}
.

• Increment the age of all edges connected to s1:

c(3) := 0, c ∈ C ∧ c(1) = s1 ∧ c(2) = b, ∀b ∈ Ds1 .

• If no edge exists between s1 and s2, create one:50

C := C ∪ {(s1, s2, 0)}.

• Reset the age of the edge between s1 and s2 to zero:

c(3) := 0, c ∈ C ∧ c(1) = s1 ∧ c(2) = s2.

• Add the squared distance between the input ξ and the prototype of unit

s1 to the accumulated error of s1:55

s
(2)
1 := s

(2)
1 + ‖s(1)

1 − ξ‖2

• Adapt the prototype of s1 and all prototypes of its direct

neighbors b ∈ Ds1 :

∆s
(1)
1 := εb

(
ξ − s(1)

1

)
, ∆b(1) := εn

(
ξ − b(1)

)
, ∀b ∈ Ds1 .

1We use the notation a(i) to reference the ith element of a tuple beginning with index 1.
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• Remove all edges with an age above a given threshold tmax and remove60

all units that no longer have any edges connected to them.

• If an integer-multiple of λ inputs was presented to the network insert a

new unit r. The new unit is inserted between the unit q ∈ A with the

maximum accumulated error and the unit f ∈ Dq which has the largest

accumulated error among the neighbors of q, i.e., the prototype of unit r65

is set to:

r(1) := (q(1) + f (1))/2.

Create edges between q and r as well as f and r, and remove the edge

betweem the units q and f . Decrease the accumulated errors of q and

f by a factor α and set the accumulated error of the new unit r to the70

decreased accumulated error of unit q.

• Finally, decrease the accumulated error of all units in A by a factor β.

Typically, the inputs ξ are randomly choosen from a set of training data and

fed into the network until a given halting criterion (e.g., a maximum network

size) is met.75

In all experiments the following parameter values were used:

εb = 0.01, εn = 0.0001, tmax = 500,

λ = 2000, α = 0.5, β = 0.0005.

The parameters deviate from the values proposed by Fritzke [4]. They result in a

slower development of the GNG which turns out to be more robust with respect

to high-dimensional inputs. A slower development compensates for possible

inhomogeneities in the training data, which are in general more likely to occur

in high-dimensional data as the ratio between the number of available training80

data points and the size of the input space typically diverges with increasing

dimension.

Local Input Space Histograms. As described above, edges in a GNG network are

created between the first and second best matching units (BMUs) s1 and s2 of

4



(a) (b)

Figure 1: (a) Geometric interpretation of the distance ratio r. (b) Example of local input

space histograms for a small, two-dimensional GNG receiving uniform, random input.

each input ξ and are maintained as long as they are used regularly. Thus, the

neighborhood relations among units represented by the GNG network indicate

that the input space between connected units is not empty. However, the mere

existence of an edge does not provide any further information about the under-

lying input space structure. The core idea of local input space histograms is to

increase the available information in this regard by adding a small histogram

H = {h0, . . . , hk−1}, e.g., with k = 16 bins, to each edge c ∈ C, c = (a, b, t,H)

of the GNG network and to update this histogram for those inputs ξ that are

mapped to the corresponding edge using a distance ratio r:

r :=
‖s(1)

1 − ξ‖ − ‖s
(1)
2 − ξ‖

‖s(1)
1 − s

(1)
2 ‖

+ 1,

with s
(1)
1 and s

(1)
2 the prototypes of the first and second BMUs for the given

input ξ.

The ratio r lies in the interval [0, 1] and describes how close the prototype

of the best matching unit s1 is to the input ξ in relation to the prototype of the
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second best matching unit s2. A geometric interpretation of the distance ratio

is depicted in figure 1a. As a local input space histogram c(4) is part of an edge

c ∈ C it is shared by the two units c(1) and c(2). Thus, the ratio r is used to

either update the upper or the lower half of the histogram depending which of

the units is the BMU s1:

∆hu = 1, u =

 bk (r/2)c if c(1) = s1,

bk (1− r/2)c if c(2) = s1,
hu ∈ c(4) = {h0, . . . , hk−1} .

The resulting histogram represents the distribution of the approximate, relative85

positions of those inputs that are located somewhere around the two connected

units. Figure 1b provides an example of local input space histograms occuring

in a two-dimensional GNG that received uniform, random input.

The additional information provided by the local input space histograms

allows to characterize the input space in more detail. For example, it can be

estimated if the input space between two connected units is sparse or dense. One

measure to quantify this property is the average bin error2 ēH of a histogram H:

ēH :=
1

k

k−1∑
i=0

ei, ei :=


√
hi/hi if hi > 0,

1 if hi = 0,
hi ∈ H = {h0, . . . , hk−1} .

In case of a local input space histogram c(4) the value of ēc(4) will be near 1 if

the corresponding region of input space is sparse and it will be close to 0 in case90

the input space is dense.

Distance Measures. The analysis of high-dimensional data spaces is accompa-

nied by a number of problems that are commonly referred to as the “curse

of dimensionality” [6]. In this context a major problem is that the ability to

discriminate data points by their relative distances diminishes with increasing

dimensionality [7]. To observe the impact of different distance measures on the

GNG and the local input space histograms we use the Minkowski distance dp

2Note: the definition of the average bin error given here differs from [3].
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in our analysis with varying values for p:

dp (x, y) :=

(
n∑

i=1

|xi − yi|p
) 1

p

, x = (x1, . . . , xn) , y = (y1, . . . , yn) .

By choosing the Minkowski distance a range of popular distance measures can

be covered: for p = 1 it is equivalent to the Manhattan distance, for p = 2

it is equivalent to the Euclidian distance , and for p → ∞ it approaches the

Chebyshev distance.95

Data. Experiments performed on random data use uniformly distributed values

in the interval [0, 1] for each vector component of the inputs ξ. The random val-

ues are generated by the Mersenne Twister pseudorandom number generator [8]

using the implementation provided by the ROOT data analysis framework [9].

Experiments performed on color histogram data of images use the oxford100

102 flowers image dataset3, which contains 8189 images of flowers from 102 cat-

egories [10]. Color histograms were generated by transforming the images into

HSV color space and using the resulting hue values weighted pixelwise by either

saturation or value depending on which was smaller. The use of weighted hue

values is motivated by the fact that neither very bright (small saturation) nor105

very dark (small value) image regions contribute much to the color information

in an image. Each histogram has 360 bins corresponding to the 360 possible

hue values of the HSV color space. The number of entries in the histogram is

normalized to an image size of 1000× 1000 pixels. Depending on the particular

experiment the number of bins was scaled down using linear interpolation to110

provide comparable input vectors that have the same dimensionality as the ran-

dom data vectors used. In general, this linear interpolation is possible because

neighboring bins in the color histogram represent similar hues.

3available at http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
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3. Results

Random Data Experiments. In order to establish a baseline on how the appear-115

ance of the local input space histograms changes with respect to either a dense

or a sparse input space and varying parameter p of the Minkowski distance a

set of experiments using random input data was conducted. For each run a

GNG with a maximum of 50 units was used. To characterize the appearance

of the local input space histograms arising at the edges of the GNG the his-120

tograms themselves were clustered as well. As no further information about

the potential characteristics of the histogram clusters, e.g., an expected num-

ber of clusters, was available, it was decided to also use a GNG to cluster the

histograms. This secondary GNG had 20 units and used as distance measure

the euclidian distance, i.e., the Minkowksi distance with p = 2 as originally125

proposed by Fritzke [4]. For each input to the primary GNG a local input space

histogram was choosen randomly among those linked to the respective BMU

and fed as input vector into the secondary GNG.

To test the influence of an increasingly sparse input space on the characteris-

tic shapes of the local input space histograms a set of seven experiment runs with130

one million inputs of n-dimensional, random data for n = {2, 3, 4, 5, 10, 20, 40}

and fixed parameter p = 2 in the primary GNG were performed4. With in-

creasing dimension n the primary GNG has to cover an exponentially growing

volume of input space with a constant number of units. Similarly, the constant

number of inputs is uniformly spread across this exponentially growing volume,135

too. As a consequence, the input space as represented by the constant number

of input samples becomes increasingly sparse and the particular inputs to the

GNG approach an equidistant position between their respective first and second

BMUs. Likewise, the distances between the GNG units themselves become more

and more similar and the locality given by the GNG edges gets essentially lost140

as the distributions of pairwise distances between all units and the distributions

4Data for n = {4, 40} omitted in figure 2.
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(a) (b)

Figure 2: (a) Change of (approximated) average local input space histograms with increasing

dimension n in GNGs of 50 units receiving random input (histograms drawn with a smoothed

curve). (b) Distributions of pairwise distances between the units of the GNGs in (a). Blue

boxes describe the pairwise distances between all units, red boxes (L-columns) describe the

pairwise distances between all units connected by edges. Bottom and top of dashed lines rep-

resent minimum and maximum values, bottom and top of each box represent lower and upper

quartiles, thick lines represent medians, and circles represent mean values of the distributions.

of pairwise distances between connected units converge (see figure 2b). Conse-

quently, the average degree of the GNG units increases as well (see figure S6).

This dynamic is reflected in the shape of the local input space histograms.

Supplementary figure S1 shows the prototypes of all secondary GNG units for145

each run. The prototypes represent the typical shapes of local input space his-

tograms that emerge in primary GNGs with uniformly distributed units. The

variation in appearance which can be observed in the two-dimensional case (see

also fig. 1b) is reduced with increasing dimension and blends into a common

triangular shape that gets increasingly narrower. Therefore figure 2a compares150

the change of the average local input space histograms5 arising in the primary

GNGs with increasing dimension n. The central, sharp peak for n = 20 rep-

resents the typical shape of a local input space histogram of a GNG edge that

5The average local input space histograms shown in figure 2a were approximated using the

prototypes of the secondary GNG.
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(a) (b)

Figure 3: (a) Change of (approximated) average local input space histograms with varying

parameter p of the Minkowski distance in GNGs of 50 units receiving 4-dimensional, uniform,

random input. (b) Distributions of pairwise distances between the units of the GNGs in (a).

Same format as in fig. 2b.

spans a sparse region of input space.

Based on the previous results we tested the influence of the choosen distance155

measure in two scenarios with a dense and a sparse input space, respectively.

Two sets of experiment runs with varying parameter p = {0.5, 1, 2, 3, 5, 10, 20}

of the Minkowski distance and fixed dimensions n = {4, 64} were performed6.

The two dimension values were choosen to obtain data for a scenario where

the input space is still sufficiently dense and the average local input space his-160

tograms have already a uniform triangular shape (n = 4), and for a scenario

where the input space is guaranteed to be sparse (n = 64). The increase of

parameter p leads in either scenario to a compression of distances between the

GNG units similar to the effect caused by an increase of input space dimension

(figures 3b and S4). However, in case of a dense input space (n = 4) the lo-165

cality given by the GNG edges stays intact with increasing values of p, i.e., the

pairwise distances of connected units differ clearly from the pairwise distances

between all units. The median value of all pairwise distances between the units

6Data for p = 0.5 and n = 64 omitted in figure 3.
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gets pushed towards the upper quartile while the bulk of all pairwise distances

between connected units stays below the lower quartile of distances between170

all units. This behavior can be explained by the fact that with increasing val-

ues of p differences between vectors that are only distributed across few vector

components are emphasized whereas differences that are spread across many

vector components are deemphasized. Thus, despite the absolute compression

of distance values, the relative contrast between near and far distances of inputs175

that share a common BMU actually improves with increasing values of p. This

interesting property will be discussed in more detail in section 4.

The appearance of the local input space histograms is virtually unaffected

by the described changes in the distance distributions (figures 3a, S2, and S3)

as the distance ratio r on which the histograms are based depends only on the180

relative distances between an input vector and its respective first and second

BMUs. This assertion, as will be shown in the next section, holds true for

high-dimensional, but locally dense data as well.

Color Data Experiments. The experiments using random data demonstrated

two properties of local input space histograms: they are robust with respect to185

the choosen distance measure, and they take on a distinct, spike-like shape if

the corresponding GNG edge spans a region of sparse input space. It remains

to be shown that local input space histograms can be used to identify locally

dense regions in a high-dimensional input space. In general, such a locally

dense region must be a low-dimensional submanifold in order to be detectable190

through a limited number of input samples. In this regard color histograms of

images represent a suitable test case as they provide a high-dimensional input

space that most likely will contain locally dense regions. Natural images – in

this case images of flowers – contain usually only a small number of main hues

while the resulting color histograms themselves are high-dimensional. The basic195

experimental setup for the color data experiments was equal to the random

data experiments described above. A primary GNG with a maximum of 50

units processed color histogram inputs. A secondary GNG with a maximum

11



(a) (b)

Figure 4: (a) Distributions of the local input space histograms’ average bin error ē in GNGs

of 50 units receiving 64-dimensional color histogram input with varying parameter p of the

Minkowski distance. (b) Distributions of pairwise distances between the units of the GNGs

in (a). Same format as in fig. 2b.

of 20 units was again used to assess the appearance of the local input space

histograms arising in the primary GNG. The color histograms were generated200

once from the images in the 102 flower dataset and were then fed into the

primary GNG in random order one million times per run.

A set of experiment runs with varying parameter p = {0.5, 1, 2, 3, 5, 10, 20}

of the Minkowski distance and 64-dimensional color histograms as input were

performed. The color histograms were scaled down from the original 360-205

dimensional color histograms as described in section 2. The dimensionality

was choosen to be 64 in order to be comparable to the high-dimensional, sparse

input space scenario of the previously described random data experiments.

The shapes of local input space histograms discovered by the secondary GNG

clearly indicate that the color histogram input space has locally dense regions210

(figure S5). Interestingly, the variation of the local input space histogram shapes

increases with bigger values of parameter p. Particularly those shapes that

indicate an underlying dense input space are appearing more frequently with

increasing p. This trend is also reflected in the distributions of the local input

space histograms’ average bin error ē shown in figure 4a. Another indication215
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a) Force-based graph drawing of a GNG (50 units, 64-dimensional color histogram

input, fixed parameter p = 2) using all edges of the GNG indiscriminately. (b-f) Force-based

graph drawings of GNGs (50 units, 64-dimensional color histogram input, varying parameter

p) using the edges of the GNGs weighted according to their local input space histograms.

that the color histogram input space has locally dense regions is given by the

distributions of pairwise distances shown in figure 4b which are similar to the

distributions of dense, 4-dimensional input space shown in figure 3, i.e., the

pairwise distances of connected units differ clearly from the pairwise distances

between all units. Despite the high-dimensionality of the color histograms the220

locality given by the GNG edges appears to remain intact and even improve

with increasing values of p. The latter assertion is supported by the fact that

the degree of the GNG units, i.e., the number of incident GNG edges, decreases

with increasing values of p (figure S7) as it would be expected of GNG units

lying in a low-dimensional submanifold.225

In order to check if these indicators are actually corresponding to some struc-

ture of the input space or are just artefacts, we adapted the force-based graph

13



drawing approach of Fruchterman and Reingold [11] to visualize the structures

in question. The drawing approach of Fruchterman and Reingold uses two forces

to control the position of the individual nodes of the graph: a repelling force

that all nodes exert on each other, and an attractive force that each node exerts

on all nodes connected to it. We modified the latter force to be weighted by an

edge strength s defined as:

s := 1− 1(
1 + 0.5 e−25(ē−0.25)

)2 ,
where ē is the average bin error of the local input space histogram of the par-

ticular edge. In addition, the edge color and thickness in the drawing is also

controlled by the edge strength (higher strength = thicker and darker). The

resulting graph drawings for GNGs with 50 units that received 64-dimensional

color histogram input are shown in figure 5b-f. For comparison, figure 5a shows230

the result of the unmodified drawing algorithm. The drawings seem to sup-

port the previous observations. With increasing value of p the locality among

neighboring units appears to increase as more and more units get connected by

strong edges, i.e., edges that cover dense regions of the input space.

To examine if the resulting structures are also semantically meaningful we235

mapped the images whose color histograms were closest to the prototypes of

the GNG onto the graph drawing shown in figure 5f. The mapping shown in

figure 6 demonstrates, that the strong edges selected on the basis of their local

input space histograms indeed represent meaningful neighborhood relations.

As an alternative way to assess the information provided by the local input240

space histograms a hierarchical clustering of GNG units was implemented using

a bottom-up approach. In case two GNG units were connected by an edge, the

distance between the two units was defined as the average bin error ē of the

corresponding local input space histogram, otherwise a constant distance of 1

was assumed. Single-linkage was used as linkage criterion. Figure 7b-f shows245

the resulting dendrograms for GNGs with 50 units that received 64-dimensional

color histogram input. For comparison, figure 7a shows the dendrogram for

a hierarchical clustering that uses the euclidian distance between the units as
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Figure 6: Mapping of closest input images to corresponding GNG units in a force-based graph

drawing approach of a GNG (50 units, 64-dimensional color histogram input, fixed parameter

p = 10).

distance measure. Similar to the force-based graph drawing approach the hier-

archical clustering too shows an increase in locality among units with increasing250

value of p. In contrast, the hierarchical clustering using the euclidian distance

does not reveal much structure and is afflicted by chaining.

Analogous to the force-based graph drawing we tested the semantic mean-

ingfulness of this approach by mapping the images whose color histograms were

closest to the prototypes of the GNG onto the hierarchical clustering dendro-255

gram of a GNG. The mapping shown in figure 8 illustrates, that in this case too

the local input space histograms provide usefull information about the structure

of the input space.
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Hierarchical clustering a GNG (50 units, 64-dimensional color histogram input,

fixed parameter p = 2) using Minkowski distance with p = 2 as element-wise distance measure

and single linkage as linkage criterion. (b-f) Hierarchical clustering of GNGs (50 units, 64-

dimensional color histogram input, varying parameter p) using the average bin error of the

local input space histograms as element-wise distance measure and single linkage as linkage

criterion.

4. Discussion

We investigated the utility of local input space histograms as an extension to260

prototype-based vector quantization methods for the analysis and clustering of

high-dimensional data. The obtained results indicate that local input space

histograms can provide useful information to support the characterization of

input space.

One interesting – and to some degree surprising – aspect of our results is the265

increased visibility of input space structures with increasing values of parameter

p of the Minkowski distance. This result contradicts the common view [7, 12, 6]

that for high-dimensional data it is favorable to use the Minkowki distance with
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Figure 8: Mapping of closest input images to corresponding GNG units for a hierarchical

clustering of a GNG (50 units, 64-dimensional color histogram input, fixed parameter p = 10).

A larger version of this figure is provided in the supplementary material (figure S8).

p = 1 or even fractional values with p < 1. In case of Hinneburg et al. [12] this

view is based on the analysis of nearest neighbor search in databases.270

Our results indicate that in the case of prototype-based methods like the

GNG this view on the Minkowski parameter p is not applicable in general and

the best value for the parameter depends on the particular type of data that is

processed. The behavior of the Minkowski distance with increasing values of its

parameter p can be illustrated with a simple example. Figure 9a shows three275

idealized color histograms. The red colored histogram describes an image with

predominantly orange, yellow, and green colors. The green colored histogram

is a slightly shifted copy of the red colored histogram and it describes an im-

age with a similar color distribution. In contrast, the blue colored histogram

describes an image that has less orange, yellow, and green content and contains280

additional blue colors. Intuitively, one would expect the red and green colored

histograms to be more similar than the red and blue colored histograms. How-

ever, the histograms are crafted in such a way, that for p = 1 the distance drg

between the red and green colored histograms and the distance drb between

the red and blue colored histograms are equal. With increasing value of p, the285

distances drg and drb diverge. The graph shown in figure 9b illustrates this by

plotting the difference of the distances, drb−drg, for increasing values of p. This
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(a) (b)

Figure 9: (a) Example of three color histograms. The red colored histogram describes an

image with predominantly orange, yellow, and green hues. The green colored histogram is

a slightly shifted copy of the red colored histogram. In contrast, the blue colored histogram

has an additional sharp peak at the blue hues. (b) The graph describes the difference of

the distance between the red and green colored histograms and the distance between the red

and blue colored histograms from (a) for increasing values of parameter p of the Minkowski

distance.

divergence of the distances can be explained by the fact that the difference be-

tween the red and the green colored histogram is spread over many bins whereas

the difference between the red and the blue colored histogram is concentrated290

in only a few bins (mainly the blue hues). With increasing p large differences

in individual bins get emphasized whereas small differences in individual bins

get deemphasized. In the extreme case, for p→∞, the Minkowski distance ap-

proaches the Chebyshev distance where the distance is determined exclusively

by the bin with the highest difference. Thus, the common view that pairwise295

distances are generally no longer meaningful in very high-dimensional spaces is

not entirely correct. If the difference between classes in a particular type of data

corresponds to large changes in a small number of data elements rather than

small changes in a large number of data elements the Minkowski distance with

high value p can actually improve the contrast between intra- and inter-class300

pairwise distances.

As a consequence for prototype-based methods like the GNG, the relative
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contrast between near and far inputs with respect to a common BMU can,

depending on the particular type of input data, increase with p and improve

the locality between first and second BMUs. In such a case, the average degree305

of the GNG units decreases (see, e.g., figure S7) and, as a further consequence,

the influence of indirect adaptation decreases, too. In case of histogram data,

e.g., color histograms, this behavior appears to be favorable and implies the use

of higher values for p. If this holds true for other kinds of data, e.g., in case of

a “bag of features”, remains to be determined.310

5. Conclusion

The utility of local input space histograms for analysing and clustering high-

dimensional data was investigated. It could be shown that they provide useful,

additional information about the structure of the input space that can be used,

e.g., for visualization and hierarchical clustering of the data. Furthermore, our315

results demonstrate that contrary to common view the Minkowski distance with

p > 1 can be a meaningful distance measure for high-dimensional data.

Based on these promising, early results a number of interesting questions

can be identified for future research:

• How do other distance measures affect the behavior of local input space320

histograms, e.g., crossbin distances for histograms like the earth movers

distance [13, 14] or the cosine distance for sparse feature vectors?

• How do the parameters of the GNG, especially the maximum number of

units, affect the results? Preliminary data indicate, that with an increasing

number of GNG units chains of units connected by edges with low average325

bin error emerge. This behavior may be used to define a robust criterion

to determine the maximum number of units automatically.

• Which kind of information can be gained from other types of data, e.g.,

when a “bag of features” approach is used?
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• How can other clustering methods such as density-based clustering be330

supported by the information contained in local input space histograms?

• Can local input space histograms support classification? For example, if

an input is mapped onto an edge with high average bin error, it could be

identified as outlier. Alternatively, the average bin error of an edge could

be used as some form of uncertainty measure for the classification of an335

input.

Furthermore, the concept of local input space histograms should be easily adapt-

able to other prototype-based vector quantization methods. For example, they

could be used in SOMs to identify borders between regions in the resulting,

two-dimensional mapping.340
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Figure S1: Comparison of local input space histograms of GNGs with 50 units, fixed Minkowski parameter p = 2,
and increasing dimensions n of input space.

2



Figure S2: Comparison of local input space histograms of GNGs with 50 units, random 4-dimensional input,
and increasing values for the Minkowski parameter p.
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Figure S3: Comparison of local input space histograms of GNGs with 50 units, random 64-dimensional input,
and increasing values for the Minkowski parameter p.
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Figure S4: Box plot of the distributions of pairwise distances between the units of GNGs with fixed input space
dimension n = 64 and varying Minkowski parameters p. Blue boxes describe the pairwise distances between
all units, red boxes (L-columns) describe the pairwise distances between all units connected by edges. Circles
represent the mean values of the distributions. Inset: Magnification of entries for p = {3, 5, 10, 20}.

5



Figure S5: Comparison of local input space histograms of GNGs with 50 units, 64-dimensional color histogram
input, and increasing values for the Minkowski parameter p.
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Figure S6: Box plot of the distributions of unit degrees of GNGs with 50 units, random input with increasing
dimension, and fixed Minkowski parameter p = 2.
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Figure S7: Box plot of the distributions of unit degrees of GNGs with 50 units, 64-dimensional color histogram
input, and increasing values for the Minkowski parameter p.
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Figure S8: Mapping of closest input images to corresponding GNG units.
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