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Abstract—The main field of application for small- and middle-
class ROVs is the inspection of underwater structures or other
objects of interest. Approaching such an object, one would want
to hold a steady position in front of the object to study it in detail
without having to concentrate on the control of the vehicle. This
kind of ”hover control” could be implemented by using an inertial
measurement unit (IMU), but most of the small- and middle-class
ROV do not have one. Furthermore, even the best IMUs tend to
drift. On this account our approach, which is presented in this
paper, uses video data to estimate the movements of the vehicle
and uses this data to keep the vehicle hovering in front of a
particular structure. The used vision algorithms are aimed at
real world applications and are robust enough to handle various
light and visibility conditions.

I. INTRODUCTION

In recent years the number of available small- and middle-
class remote operated vehicles (ROV) has risen significantly.
The main field of their application is the inspection of un-
derwater structures and other objects of interest. Due to their
relatively small size and low weight, the vehicles are generally
more prone to disturbances. Thus, holding a steady position
in front of an object of interest can be a challenging task for
the ROV pilot.

To assist the pilot in such a situation, an automatic station-
keeping or “hover control” can be implemented. The system
holds a steady position in front of an object while the pilot
can study the object in detail without having to concentrate
on the control of the vehicle. Such a system could be based
on the data of an inertial measurement unit (IMU). But most
of the small- and middle-class ROV today do not have an
on-board IMU. Furthermore, even the best IMUs tend to
drift. On this account we present a vision-based approach to
automatic station-keeping of an ROV. The system uses video
data to estimate the movements of the vehicle and thus keeps
it hovering in front of a particular structure. Besides that every
ROV is already equipped with a camera, drift cannot occur,
as the measurements are absolute and not the integration of
relative measurements.

The following section describes the vision algorithms which
where used to estimate the movements of the vehicle. After-
wards the application of this approach on a small-class ROV,
the LBV150 by seabotix, is shown. The paper closes with an
outlook on future research on this topic in our research group.

II. ROBUST VISION

To accomplish the aforementioned motion estimation un-
der various light and visibility conditions, it is essential to
use an algorithm which is able to automatically adapt to
these different conditions. A manual adjustment done by the
operator would not be feasible, as the presented system is
aimed at real world applications and should be easy to use
by just switching it on or off without any additional param-
eters to be set. To satisfy this requirement, we introduce an
extension to the well-known ”Harris Feature Detector” which
automatically specifies the needed parameters individually for
every pixel of the particular image. The approach uses an
efficient comparison of local and global entropy to decide
which parameters should be used. This entropy-driven Harris
detector chooses the most stable features in an image which
are then subsequently tracked by the optical flow algorithm of
Lucas and Kanade.

A. Harris Detector revisited

The well-known Harris detector [2] is an algorithm to detect
salient features, such as corners, in an image. These salient
features are good candidates to be tracked across several
images of an image sequence. In our case, they can be used to
determine the movement of the vehicle. The Harris detector is
based on the idea of the earlier Moravec corner detector [1],
which can be described as follows:

For each Pixel a local window Wx,y is slightly moved
into different directions while the changes in the intensity
distribution are observed. If the local area is uniform, no or
only little changes in the intensity distribution will occur.
If there is an edge in the local area, only the movement
orthogonal to the edge will have a large change in the intensity
distribution. If there is a corner or a single spot, any movement
will create a large change. Therefore, if the smallest change
in the intensity distribution of all directions has a large value,
then this indicates a single spot or a corner in the image.

This approach of Moravec has the drawback that a discrete
number of directions are used. This reduces the response
of edges and corners which are not aligned to any of the
discrete directions. The Harris detector resolves this limitation
by describing the intensity change E under a small translation
(φ, θ) by

E (φ, θ) = (φ, θ)M (φ, θ)T
.



The matrix M describes the gradients of the local window
Wx,y in the image I around the point (x, y) by

M :=
[
A C
C B

]
with

A :=
∑

u,v∈Wx,y

(Iu−1,v − Iu+1,v)2 ∗ gu,v,x,y

B :=
∑

u,v∈Wx,y

(Iu,v−1 − Iu,v+1)
2 ∗ gu,v,x,y

C :=
∑

u,v∈Wx,y

(Iu−1,v − Iu+1,v) ∗ (Iu,v−1 − Iu,v+1)∗gu,v,x,y

and the weight function g

gu,v,x,y := exp
−
(
(u− x)2 + (v − y)2

)
2σ2

.

The matrix M can be interpreted as the covariance matrix of
the summed gradients of the local area in x and y direction.
Let λ1 and λ2 be the eigenvalues of matrix M . For these
eigenvalues considerations similar to those of the Moravec
detector can be made. When both eigenvalues are small, no
edges or corners are present in the local image area. If only one
eigenvalue is big, there is an edge in the local area, as most of
the gradients are oriented in one direction. If both eigenvalues
are big, the gradients are oriented in different directions which
hints at the existence of a corner in the local image area. In
contrast to the Moravec detector, the Harris detector has a
isotropic response and the use of a Gaussian weight function
prevents sudden changes. To avoid the explicit calculation of
the eigenvalues, as for example the comparable approach of
Kanade and Tomasi [3] does, the trace and determinant of M
can be used:

T (M) = λ1 + λ2 = A+B,

D (M) = λ1λ2 = AB − C2.

Using trace and determinant, a function R can be defined,
which is positiv for corners, negativ for edges, and small for
areas:

R := D − kT 2.

The parameter k defines the sensitivity of the detector. A
bigger k reduces the value of R and leads to less detected
corners and vice versa. An alternative definition of the function
R is given by Nobel [4] which doesn’t need the parameter k:

R := D/ (T + ε)

with
ε > 0.

Finally the detected corners are grouped, so that in a certain
neighbourhood around a corner no other corner with a higher
R-value exists. A usual size of this neighbourhood has a radius
of 2 to 10 pixels.

Fig. 1: Characteristic distribution of R-values in an image and
derived thresholds t0, t1 and t2.

Although the alternative definition by Nobel reduces the
number of parameters by one, a threshold for the R-value has
still to be choosen. In a real-world application, especially in
the underwater domain, this threshold usually varies greatly
depending on the particular scene. For low contrast images,
e.g. in turbid water, the threshold should be rather low. Unlike
this, in clear deep water with artificial lighting the images
have a very high contrast and accordingly the threshold should
be rather high. Moreover, in some situations the processed
images contain both characteristics, some high contrast objects
in the foreground and some low contrast structures in the
background. Finding a single suitable threshold in such a
situation is often not possible. In addition, for the application
described in this paper, a manual selection of a threshold by
the ROV pilot would be very inconvenient and not feasible.
Therefore, a method to automatically select a good threshold
is described in the next section.

B. Automatic Threshold Selection

To determine a good threshold, we use the probability
distribution of R-values in the image. Thus, the R-value
for every pixel is calculated in a first step and the global
probability density function (GPDF) PG is approximated using
these values. Truncating all R-values with PG (r) = 0, r ∈ R,
a characteristic distribution is obtained. The intersection of
a line through origin with slope s and the GPDF results in
a suitable and contrast-independent threshold for R. Fig. 1
shows an exemplary distribution with thresholds t0, t1 and t2
obtained through different slopes. The slope s is proportional
to the relative amount of features which are found.

The threshold obtained by the previously described method
works fine as long as each image has a uniform contrast.
The method compensates only for contrast changes between
images, e.g. for different operational environments, but does
not compensate for contrast changes within one image. As
aforementioned, situations where large contrast differences
within one image exist, are quite common in the underwater
domain. Therefore, the described approach has to be extended
to be able to handle local contrast differences too:

The image is regularly divided, e.g. 4× 4, into subregions
and for each subregion the local probability density function
(LPDF) PL is approximated. Calculating a threshold as per
description for every subregion would gain some locality,



but would also lead to irregular features in subregions which
are very uniform and which have practically no structure at
all. In those regions, the above method would find a very
low threshold such that even the finest noise would result in
some features found. To prevent this, it has to be decided for
each subregion to which extent the local PDF or the global
PDF should be used. As a measure which allows for such a
differentiation the Shannon entropy can be used. The entropy
is an abstract measure for the information content of a local
area and can be derived from the particular LPDF:

HL := −
∑
r∈R

PL (r)) logPL (r)).

Accordingly we can define the global entropy HG with the
global PDF:

HG := −
∑
r∈R

P (r)) logP (r)).

With these two values, the local entropy HL of an image
region and the global entropy HG of the overall image, we
can now define an entropy-driven probability density function
(EPDF) PE for each subregion which is composed of the local
and global PDF:

PE (r) :=

{
PL (r) HL > HG

PL (r) ∗ HL

HG
+ PG (r) ∗

(
1− HL

HG

)
HL ≤ HG

with
r ∈ R.

Using these EPDFs to derive the particular thresholds for
every subregion results in a noticeable improvement of feature
detection in non-uniform (with respect to their contrast) im-
ages. Despite this improvement, this solution may suffer from
unstable features when they are tracked over several images
and the features move from one subregion to another with
a different threshold. One possible solution to this problem
would be the calculation of separate subregions for each
single pixel, but this approach would have relatively high
computational costs. A less costly approach is the interpolation
of a threshold for each single pixel based on the thresholds
of the subregions. As a preparation step for the interpolation,
the thresholds of each subregion are propagated to the corners
{c0, . . . , c3} of each region. The threshold c at a particular
corner is the average of the thresholds of all incident subre-
gions to this corner. Let (dx, dy) be the position of a pixel d
in a subregion and let (srw, srh) be the dimensions of that
subregion. The individual threshold td for d is then calculated
by:

td := c0 ∗ (1.0− u− v + w) +
c1 ∗ (u− w) +
c2 ∗ (v − w) +
c3 ∗ w

with
u := dx/srw

v := dy/srh

w := (dx ∗ dy) / (srw ∗ srh) .

This interpolation ensures a smooth transition between the
thresholds of the different subregions while being computa-
tionally cheap. Fig. 2 shows a comparison between the results
of the Harris detector with the described automatic threshold
selection and the results obtained with the ”good features
to track” algorithm by Kanade/Tomasi (using the openCV
implementation) for different underwater scenes. As it can be
seen, the number of feature points selected by the automatic
thresold stays low and nearly constant. This provides a stable
basis for any kind of feature tracking. Contrary, the standard
”good features to track” algorithm needs a scene-dependend
adjustment of its threshold. This adjustment would have to be
done by the pilot of a system during operation and would not
be very feasible. In addition, autonomous tasks like mosaicing
of large sea floor areas also rely on stable features. These
tasks can hardly be done with the classical feature detection
algorithm. In this sense, the described approach for automatic
threshold selection lays out the basic abilitiy for robust fea-
ture detection in real world scenarios and applications. To
summarize the described algorithm the schematic operation is
depicted in fig. 3 and the algorithm can be itemized as follows:

• Calculate R-values for all pixels.
• Approximate the GPDF.
• Divide the image into subregions.
• Approximate the LPDF for each subregion.
• Calculate global and local entropy values.
• Compose an EPDF based on the ratio between global and

local entropy for each subregion.
• Calculate threshold values for each subregion using the

EPDF.
• Propagate the threshold values to the corners of the

subregions.
• Interpolate an individual threshold for each pixel based

on the threshold values at the corners of the subregion
the pixel lies within.

With this approach, features can be detected under various
lighting and contrast condiditions without further parametriza-
tion. This makes it an ideal basis for feature tracking and
motion estimation in real world applications.

C. Feature Tracking

Once a set of robust features is detected, these features are
tracked with an iterative version of Lucas-Kanade optical flow
algorithm in pyramids as described by Bouguet in [5]. The
key idea of this iterative version of the Lucas-Kanade optical
flow algorithm is to use an image pyramid representation to
allow for accurate tracking (i.e. small integration window)
and robustness against large motions (i.e. large integration
window) simultaneously. In addition to the robustness against
large motion the algorithm is also quite robust against changes
in lighting or contrast. The implementation of the feature
tracker that was used is available in the OpenCV library [6].



Fig. 2: Comparison of the Harris feature detector with automatic threshold selection and the ”good features to track” with
several discrete threshold values.

Fig. 4: The used vehicle. A LBV150B2 by Seabotix Inc.

III. APPLICATION TO A SMALL-CLASS ROV

Using the described vision algorithm to estimate the motion
in a live video feed, a video-based ”hover control” for a small-
class ROV was implemented.

A. LBV150

The used vehicle is a LBV150 (fig. 4) by Seabotix Inc. [7].
The main specifications of the vehicle are as follows:
• Dimensions of 530mm× 245mm× 254mm (l/w/h).
• Weight of 10.4 kg in air.
• Thruster configuration: two forward thrusters, one vertical

and one lateral thruster.
• Max. operating current is 1.5 knots.
• 570 line color camera (PAL)

B. System Setup

The vehicle is normally controlled by a hand controller
which is connected to the surface power supply. The hand
controller uses a RS232 signal to communicate with the ROV.
The signal is modulated onto the DC power inside the surface
power supply and is demodulated onboard the ROV. In order



Fig. 3: Schematic operation of the automatic threshold selection.

Fig. 5: Screenshot of the developed control software and the
4DOF joystick used for the computer control of the LBV.

to be able to control the vehicle with a computer, the protocol
sent by the hand controller was reimplemented such that the
computer could completely replace the manual control. As the
hand controller has only a control frequency of just 2Hz, the
computer is also bound to this rather slow control frequency.
Attempts to increase the frequency resulted in problems with
the video processing onboard the ROV. Given that a higher
frequency is clearly beyond the specifications, it is by no
means devaluating the Seabotix system. The system is just
not originally designed for computer control.

In our setup, the ROV is controlled via a software running
on a standard desktop computer or notebook. The software
displays information of the actual system state, e.g. the actual
thrust on the different thrusters, and has an integrated video
window which displays the video feed of the ROV. Additional
information is overlayed while the hover control is activated,

e.g. the selected features or the vector of the average relative
movement. To steer the ROV manually, a 4DOF joystick is
connected to the software (fig. 5). In addition to the raw move-
ment control of the vehicle, all other system functions can
also be accessed via several joystick buttons. In comparison
to the classic hand controller we made the experience that the
joystick control of the vehicle is much more convenient.

The hover control can be activated/deactivated at any time
with the respective button on the joystick. When the hover
control is activated, the system selects a number of salient
features around the center of the actual video frame using the
previously described vision algorithm. Subsequently this set of
features is tracked by the Lucas-Kanade optical flow until the
hover control is deactivated again. During the hover control
the inputs of the joystick are superimposed on the commands
given by the software. As described in the next section in more
detail, the overlay of manual commands allows for a change
of the relative position in front of the observed structure, e.g. a
little thrust on the lateral thruster can cause the ROV to circuit
around the object of interest.

C. PID Control

While the hover control is activated, the response of the
ROV to the relative movements detected by the vision system
can be specified due to five PID controllers (fig. 6). The
PID controllers are highly parameterized to be adaptable to
different vehicle and thruster types. For example, the forward
thrusters on the LBV have a preferential direction and thus
the output of the correspondent PID controllers is asymmetric.
Otherwise every rotational movement would also result in a
forward movement.

The first three PID controllers control the lateral thruster
and both forward thrusters and receive the average horizontal
movement as input. Depending on the strength of each of
these controllers, the vehicle can be set to rotate towards the
seen structure, to perform a lateral movement or to perform
a movement composed of these two behaviours. The lateral
component is useful to compensate for lateral current, whereas
the rotational component allows to circuit around the observed
structure by controlling only the lateral thruster manually. The
task of the fourth PID controller is to regulate the depth of
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Fig. 6: The hovering control scheme with 5 PID controllers.

the vehicle. It controls the vertical thruster and receives the
average vertical movement as input. The fifth PID controls
the distance to the observed object by controlling both forward
thrusters. The input to this controller is the average distance
between all pairs of features in the given feature set. When
the inter-feature distance is decreasing, the vehicle’s distance
to the observed structure is increasing and vice versa.

D. Test Environment

The previously described system was tested in the DFKI
underwater testbed. The testbed consists of a 25m3 tank
spanned by a 3D gantry crane. The gantry crane allows an
object to be precisely moved in all 3 dimensions inside the
tank with speeds up to 5 meters per second. To test the hover
control, the LBV is positioned manually in front of the tip of
the gantry crane. As the tip is now in the center of the video
image, the features which are selected after the activation of
the hover control, usually belong to the tip of the gantry crane.
In this situation, the ROV is locked onto the tip of the crane
(see fig. 7a). As long as the hover control is activated, the
ROV will follow the movements of the gantry crane.

With this setup, it is possible to simulate the influence a
current would normally have on the ROV, e.g. if the tip of
the crane is moved down, the visual appearence is equal to a
current dragging the ROV up (see fig 7b). The maximum speed
of the tip of the gantry crane in this setup was 0.5 knots. At
this speed the ROV had no problems to follow the tip. It turned
out that the main difficulty with the control of the vehicle lies

within the very low control frequency. At only 2Hz it is not
possible to control the vehicle at higher speeds without having
it to overshoot when fast changes in the movement direction of
the gantry crane tip occur. However, in a real world application
these very fast changes in the current dragging the vehicle
are very unlikely to occur. Thus it can be assumed that the
maximum current which can be compensated is considerably
higher than 0.5 knots even with a control frequency of only
2Hz. A more extensive test phase in a real enviroment is
scheduled within this year.

IV. CONCLUSION AND OUTLOOK

We presented a control system which enables off-the-shelf
small- and middle-class ROVs to autonomously hover in front
of a structure or an other object of interest. The approach
uses solely the on-board camera and thus does not need a
modification of the ROV itself. The used vision algorithms
are aimed at real world applications and are robust enough to
handle various light and visibility conditions.

The area of application for the presented technique will
be extended to tasks like object following, visual odometrie
and mosaicing. The groundwork for these applications lies
within the robust and scene-independend feature selection
algorithm described in this paper. Furthermore, the integration
of additional sensor data, e.g. IMU or Sonar data, is planned
and is expected to enhance the overall robustness and precision
of the systems.
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(a) (b)

Fig. 7: Fig. 7a shows the LBV hovering inside the DFKI underwater tank locked onto the tip of the 3D gantry crane. Fig.
7b depicts the relative movement of the tip of the gantry crane detected by the described vision algorithm. The yellow dots
mark the selected features, the green lines mark the individual movement of the features and the red line marks the average
movement of all features.
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