
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4150083

Decentral control of a robot-swarm

Conference Paper · May 2005

DOI: 10.1109/ISADS.2005.1452083 · Source: IEEE Xplore

CITATIONS

3
READS

65

7 authors, including:

Some of the authors of this publication are also working on these related projects:

CManipulator View project

Jochen Kerdels

FernUniversität in Hagen

36 PUBLICATIONS 131 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jochen Kerdels on 06 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4150083_Decentral_control_of_a_robot-swarm?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4150083_Decentral_control_of_a_robot-swarm?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CManipulator?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/FernUniversitaet_in_Hagen?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-00983133b7421855ebaefc6665fe181a-XXX&enrichSource=Y292ZXJQYWdlOzQxNTAwODM7QVM6OTkyODM0OTU4MTcyMjdAMTQwMDY4MjQzODQ0OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Decentral Control of a Robot-Swarm

I.Dahm, M.Hebbel, M.Hülsbusch, J.Kerdels, W.Nistico, C.Schumann, M.Wachter
Computer Engineering Institute, University Dortmund, Otto-Hahn-Strasse 4, D-44221 Dortmund

ingo.dahm@udo.edu

Abstract
In this paper, we present an approach to construct a
universal architecture to control a team of autonomous
robots. The suggested approach is robust against com-
munication problems and robots’ hardware failures.
The system profits from its decentral architecture. We
present, how the control structure is designed and
implemented and how basic tasks are scheduled and
distributed running the approach. Thereto, we present
the three modules of the architecture: A robust com-
munication, a decentral data storage by sensor-fusion,
and a decentral task-scheduling. As a matter of fact,
we do not focus on a specific implementation but on
the concept behind our system-wide approach. For the
proof of concept, we reference to an implementation
which was honored by the first place of the Open
Challenge at RoboCup world championship in Lissboa
2004.

1. Introduction
Autonomous teams of robots are expected to solve

several scientific and industrial challenges. Robots can
work at places, which are uncomfortable, dangerous or
even unreachable for human beings (e.g. observations
on planet mars) [1]. It is difficult, expensive or just
impossible to teach, control or maintain the robots at
such places. Thereto, a robot team must act reactive,
fault-tolerant and autonomously. Thus, it is a challenge
to implement an efficient decentral control architec-
ture [2], [3], [4]. For the following, such an architecture
consists of three major components:
• a robust communication,
• a fault-tolerant data distribution,
• and an efficient task scheduling.
In the next three sections, we suggest implemen-

tations for each of this modules. Further, we show
exemplary, how this approaches are adjusted in order

to fit the special side-constraints of a real application.
To benchmark the power of our decentral approach,
we chose the so-called �‘RoboCup�’ Scenario. In this
application, a number of four robots fights against
another four robots to shoot a ball in the opponents
goal. Side-constraints � like gaming rules and robots
own stability � must be considered [5]. In our case,
we use Sonys ERS-7 robots to participate in the so-
called �Four-Legged-League� as illustrated in Fig. 1.
We selected the freely available GermanTeam code of
2003 (GT2003) as starting point of our research [6].

2. Robust Communication
The Sony ERS7 is equipped with a 802.11b wireless

LAN device to communicate with its teammates. This
communication is used to synchronize the world-model
between the robots and for task scheduling as described
later.

The robot’s operating-system includes native support
for IP-based communication using the UDP or TCP
protocol. It turned out that UDP is the better choice
for sending short packets of data from one robot to
another. The reasons for using UDP were:
• TCP produces much overhead
• TCP connections have to be reestablished if lost
In our approach every robot sends information about

its world model and its task-scheduling related data
to every other robot of his team. There are two ways
to spread these information among the team. The first
way is an UDP-broadcast which sends the data to all
other robots and computers on the same network. On
the other hand, every individual of the swarm has to
process every packet � even if the data is not sent from
a team-mate. Thereto, we use single-casts: every robot
sends out a separate packet to every other robot in the
team.

Because every robot needs the IP-addresses of the
other robots in its team, we created the so-called

0-7803-8963-8/05/$20.00 ©2005 IEEE. 347

�Dog-Discovery-Protocol� (DDP). Every robot sends
an UDP-broadcast packet to every other robot on the
network at a rate of 500 mHz. This packet contains
a team-identifier of the robot. Every robot in commu-
nication range receives this packet and checks for the
right team-identifier. If it equals its own identifier, the
receiver adds the IP-address of the sender to a list of
teammates. If for some reason a robot does not receive
any packet from a known sender, the suspicious address
is removed from the list.

This communication scheme is proofed to be robust
by testing in the development and at several robot-
soccer games on the different events and locations. Each
robot quickly finds its teammates and starts communi-
cating with them. Also after a robot runs out of battery
or crashes, all other robots still communicate to each
other. After rebooting the defect robot reintegrates itself
into the team-communication within seconds.

On big RoboCup events like the German-Open or
the world championship there are many wireless LAN
networks which interfere with each other. In this en-
vironment the packet-loss (packets of size P) is high.
Thus, some of the sent data is lost. On the other hand,
a minimum bandwith B is granted to each team by the
technical rules [5]. Therefore, data is sent not faster as
P/B (in our case: 100ms) to other robots such that
data distribution and task scheduling modules have as
current as possible data.

Fig. 1. Sony’s ERS-7. This is the newest 20 degree-of-freedom,
fully autonomous four-legged robot used in RoboCup robot soccer
games.

3. Data Distribution and Fusion
When using distributed systems in a realtime envi-

ronment, you have to deal with several problems. One
of them is inaccurate sensor information caused by
quantization effects, detection problems or analog to
digital conversion. This leads to inaccurate localization
of robots, team-mates and objects. As positioning is
a vital task of a swarm, it is a challenge to solve this
problem. Moreover, it seems to be beneficial to combine
many imprecise observations in order to calculate a
fused information with higher correctness. The standard
way to solve the problem is the so-called sensor fusion.
Thereto, several constraints must be considered:

1) A common timebase is needed. Thus, the dis-
tributed system can find matching sensory infor-
mation due to their time-stamp.

2) If sensor fusion is used for localization, then the
position of each sensor has to be well known, too.

3) It is meaningful to know about the reliability of all
sensor data. Hence, information can be weighted.
This leads to improved confidence information of
the merged data.

In the next section, we present the idea of sensor
fusion in our approach.

A. Implementation

Object tracking in an important task for sensor fusion,
especially in case of robot soccer. Typically, more than
one robot are able to recognize the ball at the playing
field. Unfortunately, due to low camera quality, the
estimated position is inaccurate. A robot is able to to
determine the bearing of accurately, but the distance
has a tolerance of up to 30 percent as illustrated by
Fig. 3(a). To determine the distance more accurately,
additional information is needed. As a basic approach,
the position can be estimated by a simple cross bearing.
If there are more than two robots a more complex
strategy is needed. For this purpose, we suggest the
use of a gaussian fusion algorithm [6]. Every percept
is represented by a two dimensional Gaussian distri-
bution which reflects the two-dimensional probability
function of the observed object. Two or more Gaussian
distributed probability functions can be merged, by
weighted multiplication, whereas the weight illustrates
the reliability of the corresponding sensor. As the al-
gorithm is associative, a variable number of percepts
can be merged [7]. Thus, the suggested methodology is
a robust way to share sensor information in a team of
robots.

348

-1000

-500

0

500

1000

Feld X

-1000

-500

0

500

1000

Feld Y

(a) Two ball percepts before merge

-1000

-500

0

500

1000

Feld X

-1000

-500

0

500

1000

Feld Y

(b) Two single percepts and result-
ing ball position

Fig. 2. Example of sensor fusion with ball percepts from two robots

4. Task Scheduling
As presented before, we expect a working commu-

nication system for best results in task scheduling. On
the other hand, the approach works as well, if robots
knock down or communication failures occur.

Thus, let’s assume there is a team of ½ robots which
are able to communicate with each other. Further, this
robots have to solve a task which can be divided
into subtasks. Let’s assume there are τ different tasks
T1 . . . Tτ which can be executed on at least one individ-
ual Rj of the robotic team. When there are more tasks
than robots (τ > ½), we have to deal with a matching
problem. This can be solved in a similar fashion as
the well-known problem of task distribution in a meta-
computer network [8], [9].

To solve it efficiently, priorities must be assigned to
all tasks. The next step is to obtain knowledge about
the actual situation and the environmental conditions:

A. Classification

Typically, for each robot Ri the environment at time
t can be described by its own world model Mi(t) [10].
Without loss of generality, M(t) can be classified into
a set of situations sk with 1 ≤ k ≤ σ.

We assume that in every situation sk exists an
optimal priority-rating vi of the tasks Ti. Thereto, let
~v = (v1, v2, . . . vτ) be a τ -dimensional weight vector,
where the priority of each task T1, . . . , Tτ is stored.
If there are σ different situations, then there will be
σ corresponding weight vectors ~v1 . . . ~vσ, too. The

(a) Using sensor data from a single robot

(b) Using sensor fusion. The yellow circles are fused ball positions,
the white ones are from the robot in the bottom right corner.

Fig. 3. Calculated ball position of 250 sensor readings. The ball is
in the center of the field.

classification of the actual situation can be done easily
by using the world model of the robot. As presented in
the last section, we make use of a global world model.
This data structure is calculated from local observations
(sensor input) and communicated sensor data from other
robots.

Thus, after classification of the actual world-state,
finding the corresponding optimal rating is a matching
problem [11].

B. Matching

To find the best solution of the matching problem, we
suggest to estimate the ability wi

j of robot Ri to solve
task Tj . The current world-state belief Mi(t) of robot i

is assumed to be classified into a situation sj(Mi) in the
first step. Finding the optimal task distribution means
to maximize the dot-product of task-rating vector and
priority-vector according to the actual situation v(sj).
This can be done efficiently by applying the Hungarian
Algorithm [12]. If all robots had the same information

349

about their environment (i.e. if they shared the same
world model), every robot would find the same solution
of the matching problem.

The matching would be identical and unique, re-
sulting in a deterministic problem solution. However,
due to the physical limits of communication speed and
inaccuracies in measurements, the world models of the
robots differ from each other. Thereto, it is necessary
to estimate the decisions of all teammates and address
the hazards which might occur.

C. Estimation

Our estimation follows the basic approach: Every
robot assumes, that its own world model is identical to
all other robots world models. Formally spoken: Robot
Ri assumes all robots use world model Mi(t). The
simplest way to minimize the estimation error is to
prevent Mi(t) from diverge to Mj(t). This can be done
by using a global world model and frequent exchanges
of observations and sensor data as done in our original
code [6], [10].

Thereto, inaccuracies occur only due to the limita-
tions of communication speed and package loss. Any-
way, as conflicts might occur, we need an arbitration
technique.

D. Arbitration

Hazards can occur whenever reality and estimate
differ from each other [13]. A serious problem is
a non-unique task assignment: first, this can lead to
allocation problems; second, it blocks robot resources
which should be utilized more efficiently. As a result, an
efficient arbitration is required to avoid such conflicts.
As the robotic system works in real-time, it’s required
an approach that fits this additional constraint.

As a basic approach, we broadcast the computed
scheduling table of every robot Ri ∀ i ∈ [1, ½]. Thus,
hazards in matching can principally be detected and
alternative tasks can be scheduled.

In the VR-system, the arbitration should not create a
heavy load on the processors and the communication.
Thus, we suggest to minimize the communication load
by transferring only a time-stamp and the scheduling
table: all data that is needed to be exchanged between
the robots is the task-rating for all tasks.

When the product ½ · τ is small, the size of the
transmitted data is reasonable (like one UDP packet).
The consumed processing power is negligible compared
to the communication time. In our case, we use five

robots and about 20 tasks. Task-rating is done in double-
values (4 Bytes). Thus, without header, we send 400
Bytes after each scheduling step. Including latency of
30ms for each packet, transfer takes less than 130ms.
This enables more than seven updates per second.

A second approach is to use a single master to
perform the arbitration. This would increase the update
rate as only the master has to broadcast its scheduling
table. In our case, an update rate of more than 30 Hz
could be reached. On the other hand, this approach
suffers from reduced robustness, as the master is a
single-point-of-failure. This problem can be solved by
a �logical� master which requires additional software
and communication protocols.

In our case, the first approach works fine, since it is
easy to implement and we do not have to care about
availability of robots. As each task-rating packet con-
tains a time-stamp, the arbiter is able to give priority to
the youngest subscriber (LIFO). This makes it possible
to handle communication failures or synchronization
problems, because the important tasks are implicitly
scheduled to robots which were known to be reachable
a short time before.

If some robots are unavailable, the remaining robots
perform the high weighted tasks in the according
configuration. In case of a complete communication
breakdown, each robot just executes the task with the
highest product of priority by ability vr

i · wr
j .

5. Results
In 2004, we equipped our robot team with the sug-

gested control-structure. We observed no communica-
tion problems during all championships. Further, it was
clearly observable, that the robots localized significantly
better than 2003 due to the fusion of sensory informa-
tion. Finally, our novel task distribution took us to the
semi-finals at the German Open 2004 and at the US
Open 2004. We placed third at the Australian Open and
won against the last years world-champion UNSW [14].
Finally, at the world championship, we provided a
demonstration of our software for the RoboCup Open
Challenge and got honored by the first place.

The suggested approach seems to be a useful solution
for decentrally controlled robotic systems. It offers a ro-
bust communication platform, an efficient data distribu-
tion, and an automatic task scheduling. The algorithmic
complexity is moderate - our system works in real-time.
In our the exemplary application of a Sony Aibo team,
the processing-power consuming image processing and
analysis works in parallel to the control application at

350

the same processor (QED RM5232 at 567 MHz) and
provides the full rate of 30 frames per second.

6. Conclusion
As next steps, we will open the framework to other

applications, such as surveying and mapping by a
swarm of robots. We will investigate in more transpar-
ent ways to prioritize tasks and a fully-automatic situa-
tion classification. Thereto, we will use an adaptive clas-
sification with automatic confidence estimation [15].
Then, we expect the framework to be useful for a wider
range of applications.

7. Acknowledgments
This work was supported by Microsoft Deutschland

GmbH and the DFG under the program of emphasis
SPP 1125. We thank our colleague Jens Ziegler and
our students Thomas Kindler and Jörn Hamerla for their
valuable work at this project in the past.

8. References

[1] M. Mataric and G. Sukhatme, “Task-allocation and coordination
of multiple robots for planetary exploration,” 2001.

[2] T. Balch, “Grid-based navigation for mobile robots,” 1996.

[3] T. Vu, J. Go, G. Kaminka, M. Veloso, and B. Browning,
“Monad: A flexible architecture for multi-agent control,” 2003.

[4] L. Parker, “Alliance: An architecture for fault-tolerant multi-
robot cooperation,” 1998.

[5] Sony Legged League Participants, “Sony four legged robot
football league rule book,” tech. rep., Sony Legged League,
2002.

[6] M. Juengel, M. Loetzsch, R. Brunn, M. Kallnik, N. Kuntze,
M. Kunz, M. Risler, T. Laue, T. Roefer, I. Dahm, M. Hebbel,
M. Wachter, A. Osterhues, and J. Ziegler, “German Team 2003,”
in RoboCup 2003, Lecture Notes in Artificial Intelligence.
Springer, 2003.

[7] S. Deutsch, T. Dickhöfer, W. Ding, K. Engel, P. Kudlacik,
A. Osterhues, J. Prünte, A. Reiß, S. Schmidt, C. Thiel, and
M. Wachter, “Sony Legged League: Entwicklung von verteilten
Algorithmen zur effizienten Kontrolle von autonomen Fuball-
robotern.”

[8] U. S. C.Bitten, J. Gehring and R. Yahyapour, “The NRW-
Metacomputer. Building Blocks for A Worldwide Computa-
tional Grid,” in International Parallel and Distributed Process-
ing Symposium 2000, 2000.

[9] U. Schwiegelshohn and R. Yahyapour, “Resource Allocation
and Scheduling in Metasystems,” in Proceedings of the Dis-
tributed Computing and Metacomputing Workshop at HPCN
Europe (P. Sloot, M. Bibak, A. Hoekstra, and B. Hertzberger,
eds.), pp. 851–860, Springer–Verlag, Lecture Notes in Computer
Science LNCS 1593, April 1999.

[10] I. Dahm and J. Ziegler, “Adaptive methods to improve self-
localization in robot soccer,” in RoboCup Symposium Fukuoka,
2002.

[11] A. H. Timmer and J. A. G. Jess, “Exact scheduling strategies
based on bipartite graph matching,” pp. 42–47.

[12] M. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of the Society of Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, March 1957.

[13] E. H.-M. Sha and K. Steiglitz, “Maintaining bipartite matchings
in the presence of failures,” in International Parallel Processing
Symposium, pp. 57–64, 1993.

[14] A. Olave, D. Wang, J. Wong, T. Tam, B. Leung, M. S. Kim,
J. Brooks, A. Chang, N. V. Huben, C. Sammut, and B. Hengst,
“The UNSW RoboCup 2002 Legged League Team,” in The First
RoboCup Australian Open 2003 (AORC-2003), 2003.

[15] I.Dahm, “Neural networks with on-the-fly confidence-
estimation,” in IEEE International Conference on Signal
Processing (ICSP), 2004.

351

View publication statsView publication stats

https://www.researchgate.net/publication/4150083

