
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262067288

Virtual Robot: Automatic Analysis of Situations and Management of Resources

in a Team of Soccer Robots.

Article · January 2004

CITATIONS

0
READS

61

19 authors, including:

Some of the authors of this publication are also working on these related projects:

CManipulator View project

Jochen Kerdels

FernUniversität in Hagen

36 PUBLICATIONS 131 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jochen Kerdels on 06 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/262067288_Virtual_Robot_Automatic_Analysis_of_Situations_and_Management_of_Resources_in_a_Team_of_Soccer_Robots?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/262067288_Virtual_Robot_Automatic_Analysis_of_Situations_and_Management_of_Resources_in_a_Team_of_Soccer_Robots?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CManipulator?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/FernUniversitaet_in_Hagen?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen_Kerdels?enrichId=rgreq-4eed03651b768c5fef4997ec4ec0a2cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MjA2NzI4ODtBUzoxMDM1NzkzOTAwNTQ0MDdAMTQwMTcwNjY1OTc5Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

UNIVERSITÄT DORTMUND

FACHBEREICH INFORMATIK

Sony Legged League

Virtual Robot: Automatic Analysis

of Situations and Management of
Resources in a Team of Soccer

Robots.

PG 442

Students: Damien Deom, Jörn Hamerla, Mathias

Hülsbusch, Jochen Kerdels, Thomas Kindler,

Hyung-Won Koh, Tim Lohmann, Manuel Neubach,

Claudius Rink, Andreas Rossbacher, Frank

Roßdeutscher, Bernd Schmidt, Carsten Schumann,

Pascal Serwe

Supervisors: Ingo Dahm, Matthias Hebbel,

Walter Nistico, Christoph Richter, Dr. Jens Ziegler

September 2004

FINAL REPORT

Lehrstuhl für Systemanalyse

Fachbereich Informatik der

Universität Dortmund

Computer Engineering Institute

Fachbereich Elektrotechnik der

Universität Dortmund

yS S

Figure 1: An early robot dog ..1

Figure 2: .. and the technology behind it.

1 The picture shows Muffit, a character from the Battlestar Galactica TV series. NBC, 1978-80.

Contents

1 Introduction 4

1.1 Overview of the RoboCup . 4

1.2 Overview of the project group . 5

2 Basics 6

2.1 Rules of the games . 6

2.2 API and operating system . 6

2.2.1 Aperios . 6

2.2.2 Open-R . 7

2.2.3 GT2004 . 7

2.3 GermanTeam software architecture . 8

2.3.1 Process framework . 8

2.3.2 Module concept . 8

2.4 RobotControl . 10

2.5 Main focus of the GermanTeam . 10

3 Tuning for the ERS-7 11

3.1 New hardware . 11

3.2 New SDK . 12

3.3 Software changes . 13

3.3.1 Development of a new walking gait 13

3.3.2 New kicks and MOFs . 15

4 Image Processing 23

4.1 Motivation . 23

4.1.1 Color Correction . 24

4.1.2 Supporting Color Tables . 24

4.2 EdgeDetection . 25

4.3 Raster Image Processor . 28

4.3.1 Architecture . 28

1

4.3.2 Clustering . 29

4.3.3 Ball Detection . 30

4.3.4 Beacon Detection . 32

4.3.5 Goal Detection . 33

4.3.6 Line detection . 33

4.3.7 Obstacle detection . 39

4.3.8 Opponent Detection . 39

4.3.9 Other Approaches to Opponent Detection 44

4.4 Image Processing for the Open Challenge 46

4.4.1 Climbing the ramp . 46

4.4.2 Platform Beacon Detection . 47

5 Resource Scheduling 49

5.1 Dynamic Team Tactics . 49

5.1.1 Overview on Dynamic Team Tactics 50

5.1.2 Files, Folders and Implementation 53

5.1.3 Working with DTT . 54

5.1.4 The inner workings of option ratings 55

5.2 Scheduler Module Integration . 56

5.2.1 Senso - a sample application . 57

5.2.2 Conclusion . 57

6 Ceiling Camera 58

6.1 Lens distortion correction . 59

6.1.1 Reduced distortion models . 61

6.2 Perspective correction . 61

6.3 Implementation . 62

6.4 User interface . 63

6.5 Towards an automated oracle . 64

7 Competitions 65

7.1 German Open 2004 . 65

7.2 Opens 2004 . 66

7.3 RoboCup 2004 . 66

7.3.1 WE ARE THE CHAMPIONS!! . 67

7.3.2 Open Challenge . 70

8 Side Projects 73

2

8.1 World State Player . 73

8.2 Demo Stick . 74

8.3 Walking on a Leash . 74

References 75

3

Chapter 1

Introduction

This final report describes the work and the results of one year’s work of the project group
442. The main topic and focus area of research was the further development of artificial
intelligence concepts, cooperative decision making and collaborative solution development
by autonomous robots. The virtual robot metaphor serves as a means of realization for all
these tasks. Additional supportive fields of development were enhanced image processing
to allocate additional computing time for decision making processes and the introduction
of an overhead ceiling camera, which will be used for automated debug purposes and
serves as an additional external control instance to enhance the visualization of robot
internal data matched with real on-pitch situations.

1.1 Overview of the RoboCup

RoboCup is an international initiative which promotes the research and development of
Artificial Intelligence and Robotics. The main focus of this project is in playing competi-
tive soccer with robots, which means to examine and integrate technologies of autonomous
agents, multi agent collaboration, real time planning and control and sensor data analysis
and fusion. For this purpose the first official international conference and soccer games
were held in Nagoya, Japan, in 1997. Followed by Paris, Stockholm, Melbourne, Seattle,
Fukuoka and Padova, this year the 8th edition of the Robot World Cup Soccer Games
and Conferences took place in Lisbon, Portugal.

Currently the RoboCup is also expanding in two other domains: the RoboCup Rescue and
the RoboCup Junior League. Like the original RoboCup soccer, these are also divided
into several leagues.

The games are important opportunities for researchers and developers to exchange tech-
nical information for advancing their own software and hardware solutions. So there is a
large development from year to year. To keep this development interesting, a specific long-
term objective was set. The RoboCup Federation set the ultimate goal for the challenge
as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win a soccer game, observing the official rules of the FIFA, against
the winner of the most recent World Cup.”

4

CHAPTER 1. INTRODUCTION 5

For more information we reference to the official site from the RoboCup federation.1

1.2 Overview of the project group

The project group 442 (in the following just called “project group”) was based on the
development and improvement of soccer playing robots. The robots that were used are
of the type “Aibo” of the japanese manufacturer Sony.

To enable a reasonable kind of soccer game, it is necessary that several fields of robotic
science like artificial intelligence, running movements, image processing and communi-
cation are combined and integrated cleverly. Therefore the soccer playing robots are of
general interest for science.

This project group is part of the GermanTeam, which is composed of undergraduate stu-
dents, PhD students and professors of the HU Berlin, the TU Bremen, the TU Darmstadt
and the University of Dortmund.

The commonly developed code “GT2003” of the GermanTeam was supposed to be taken
as a base for “GT2004” and further improved.

Because of a modular software-concept, it is possible to develop parts of a program to-
gether or in competition with other universities.

1RoboCup official Site: http://www.robocup.org/

Chapter 2

Basics

2.1 Rules of the games

The match is placed on a 4,60m x 3,10m large field and it is played with an orange colored
ball (see picture 2.1). The goals are 60 cm wide and colored (yellow and sky-blue).

Figure 2.1: The Playing Field

Four robots form a team which can be identified by either the red or the blue colored
tricots. At the corners of the field there are landmarks that help the robots to localize.
The robots determine their position on the field looking at the goals and the colored
landmarks. Every landmark has a unique color-code which is composed of the colors
white, pink and either yellow or sky-blue, depending on the whether they are on the blue
or yellow goal´s side. A match consists of two halves, each lasting 10 minutes. During the
half-time interval the tricots and the sides will be switched. Further detail can be found
in the official rules of the technical committee of the RoboCup.

2.2 API and operating system

In order to program the Aibo, Sony offers a development environment. This consists of
the operating system Aperios and on top of it a Middleware API-library called “Open-R”.

6

CHAPTER 2. BASICS 7

2.2.1 Aperios

Aperios is an operating system that was developed from the operating system Apertos
and is applied in many consumer devices of Sony. The main characteristics are real-time
capabilities and its object-oriented structure.

In Aperios each process is an object. Aperios enables the communication between two
processes by message passing. This is information that is sent from a transmitting object
to a receiving object. Messages consist of a Messageinfo-structure that contains
information about type and size of the Message and the adequate data (i.e. camera-
data).

Essential is the division of the objects into Sender and Observer. Each object must
have the following functions (also called “Entry-Points” in the following):

• construction:

– DoInit (): initialization of an object

– DoStart (): start sending/ observing Messages

• destruction:

– DoStop (): stop sending/ observing of Messages

– DoDestroy (): removing the object

• subject-specific (Sender):

– ControlHandler (): establishing a connection

– ReadyHandler (): observing of Messages

• observer-specific (Observer):

– ConnectHandler (): establishing a connection

– NotifyHandler (): observing of Messages

2.2.2 Open-R

Aperios is not an operating system dedicated just to robots, on top of it there is another
interface that provides the functions of the common programming of robots. This so
called Open-R middleware API enables the access for all sensors (camera, sensing devices
and so on) and actors (joints, LEDs, etc.) of a robot.

Open-R is an abstract API for all kinds of robots, i.e theoretically making possible to let
the behavior of a four-legged robot run on a robot with wheels.

The fundamental components of the robot like joints, the camera, the LEDs and so on
are called Primitives.

To use a sensor, the corresponding Primitive must be opened. During the initializing
of a process the access is activated on a sensor by Openprimitive. After that there is
the possibility by Controlprimitive to change the settings (i.e. camera white balance
adjustment). Then the data will be sent by Message and can be received by Getinfo

and Getdata and be analysed.

CHAPTER 2. BASICS 8

Another important feature is that the Open-R environment can also run on a personal
computer which is very comfortable for testing a robot-simulation.

2.2.3 GT2004

GT2004 is the name of the complete project on which the project group has worked
on. Since there are four universities taking part in it, there is a central CVS-Server
(Concurrent Versions System, a file version control system which allows different persons
to work on the same source code files) in Berlin, on which all source files are saved.

The structure of the complete project is laid out as follows. Each university has the
option to develop their own ideas for sections of the project by themselves, to save these
seperately and because of the modular structure of GT2004 they can be tested against
each other.

A further aim of the modularization of GT2004 is to create an environment, where it is
possibile to test the code on a robot and also on a simulator running on a Windows pc.

2.3 GermanTeam software architecture

Since the GermanTeam consists of several teams on different geographical locations, a
software architecture which supports a cooperative, concurrent and parallel development
is needed. To accomplish this goal the source code to control the entire robot is divided
into encapsulated modules with well-defined tasks and interfaces and a process-layout
where every process running on the robot is responsible for executing a set of modules.

2.3.1 Process framework

Processes in GT2004 are represented by classes which implement the system-independent
interface Process given by the Open-R framework. For Microsoft Windows the instances
are realized as threads inside RobotControl(see 2.2.3 on the preceding page), on the robot
as Aperios processes. The main routine of this class is main() and has as return value the
time in milliseconds until the routine starts again after finishing (if the value is positive)
or parallel to the running routine (if the value is negative). Processes can communicate
among each other through Message-Objects(see 2.2.1 on page 6) The set of processes
running concurrently on a system is summarized in a so called “Process-Layout”. In the
current GT2004 Process-Layout three processes are running parallelly:

1. The Cognition Process is responsible for the Image Processing(representated
by the ImageProcess module [2.3.2]), the Behavior Control(BehaviorControl

module [2.3.2]), and the Worldmodel Generation(Locator modules in Figure 2.2
on the following page).

2. The Motion Process task is the controlsystem instance of the robots physical
movement (MotionControl module [2.3.2]).

3. The Debug Process is responsible for the communication between the robot and
RobotControl (2.4 on page 10) and handles debug messages.

CHAPTER 2. BASICS 9

2.3.2 Module concept

In GT2004 different problems are separated into modules. Each module describes a set of
tasks, for example there is a module for processing image information and one for control-
ling the behavior. Because every module has a well-defined interface, different solutions
can be implemented for each module and these solutions are switchable at runtime [5].
Figure 2.2 gives an overview over most of GT2004 modules represented by rectangles.
Between modules data dependencies are indicated by arrows. These dependencies mean
that one module processes the output data from a previous module. Data objects are
shown as ellipses.

Image

ImageProcessor

SensorDataBuffer

SensorDataProcessorCollisionDetector CameraMatrix

BodyPercept PSDPerceptCollisionPercept LandmarksPercept BallPerceptLinesPercept PlayersPerceptObstaclesPercept

RobotStateDetector ObstaclesLocator SelfLocator BallLocator PlayersLocator

BehaviorControl

RobotPoseRobotState ObstaclesModel BallPosition

TeamBallLocator

PlayerPoseCollectionTeamMessageCollection

SoundRequest LEDRequest MotionRequestHeadControlMode TeamMessageCollection

SoundControl LEDControl MotionControlHeadControl HeadMotionRequest

SoundData LEDValue JointDataBuffer

Figure 2.2: Overview of GT2004 modules and data dependencies between them

For example the BallLocator needs data to calculate the ball position. The needed
data is combined in a so called BallPercept. This percept is generated and allocated
by the ImageProcessor.

Module overview

The GT2004 module concept (see chapter 2.3.2)is sufficient for solving the entire task:
playing soccer. A general overview of modules and their task follows. [compare Figure 2.2]

• ImageProcessor: recognize objects in camera images and calculate their position
in a robot-cetric reference system.

• SensorDataProcessor: collects sensor (other than camera) information, combine
and pre-calculate them into datapackages, called “percepts”. (e.g the CameraMa-

trix is calculated from several joint-angles and describes the relative position of
the camera to the body)

CHAPTER 2. BASICS 10

• RobotStateProcessor: generates the RobotState which represents the current
state the Robot is in. The Data includes for example which button is pressed or
what the position of the leg joints is.

• SpecialVision: this module performs similar tasks as the imageProcessor, but
normally is not in use. Its for special tasks like processing picture information
which is not directly linked to playing soccer, like reading a barcode.

• CollisionDetector: tests if the robot has a collision with an object or obstacle.

• BallLocator: transforms data from BallPercepts to absolute field coordinates,
taking sensor noise into account.

• TeamBallLocator: Combine a set of percepts received from all teammates Bal-

lLocators into a single ball hypothesis.

• PlayersLocator: calculates the field coordinates of seen robots from data provided
by the PlayerPercept

• SelfLocator: calculate the position the robot itself stands on the field, in own field
coordinates.

• ObstaclesLocator: locates Obstacles on the field and calculates their positions for
other modules.

• BehaviourControl: takes the current available information about robots and en-
viroment to decide on how the robot has to act.

• HeadControl: controlling and timing of head motions.

• LEDControl: turns LEDs (light emitting diodes) on and off.

• MotionControl: controls all actors/servos of the robot.

• WalkingEngine: calculates sets of joint angles and motor drive speeds to create a
walking motion. This is a submodule of MotionControl.

• SpecialActions: calculates sets of joint angles and motor drive speeds to create
special motion sequences(e.g. kicks, chapter 3.3.2 on page 15).

• SoundControl: processes and plays sounds.

2.4 RobotControl

RobotControl is a tool, which is primarily used for the debug communication to the
robots. It is possible to establish a connection to one robot, or to all at the same time,
with the goal to get the data, like camera pictures, joint angles etc., from the robots.

CHAPTER 2. BASICS 11

Figure 2.3: Screenshot of RobotControl, the application which is used for debugging

2.5 Main focus of the GermanTeam

The main focus of the GermanTeam is to improve the robots´ ability to play soccer. To
do so, the four member universities (Bremen, Berlin, Darmstadt and Dortmund) of the
GermanTeam are working at one single project. Until the GermanOpen, which takes
place at the beginning of the year, each team is working autonomously, trying to improve
their own gameplay and performance on the base of last year‘s GermanTeam code. After
the GermanOpen the new improvements and developments of every team are merged, the
best candidate for every single module is selected. After this consolidation the four teams
are working on the new GermanTeam code with the goal to win the annual RoboCup
(world championship).

Chapter 3

Tuning for the ERS-7

In October 2003 Sony introduced a new model of Aibo robots, the ERS-7. It’s the
successor of the ERS-210 which was used by our preceding project group and also was
the model we started working on.

We received our first ERS-7 in January 2004. As we had decided to participate in the
GermanOpen 2004 (the GermanOpen competition is annually taking place in Paderborn)
with the new robots we had to port the existing software to this new model. The differ-
ences between the ERS-210 and ERS-7 can be divided into two major sections: the new
hardware of the robot and the new SDK (Software Development Kit) provided by Sony
for the new robots.

Figure 3.1: Technical drawing of the front and side of the ERS-210 robot. All measure-
ments are given in mm.

The new hardware and software forced us to develop a new walking gait and new kicks
which will be described later in this chapter.

12

CHAPTER 3. TUNING FOR THE ERS-7 13

3.1 New hardware

The hardware changes Sony made for the ERS-7 consist of two major categories.

1. Physical appearance

2. Internals

As for the physical appearance the main difference of the ERS-7 compared to the older
robot is its bigger and heavier body. For example the extremities are about 1 cm longer
(as can be seen on fig. 3.1 and fig. 3.2) than those of the old robot.

Figure 3.2: Technical drawing of the front and side of the ERS-7 robot. All measurements
given in mm.

Also the head is a lot bigger and heavier than in the ERS-210 robot which gives the robot a
completely different barycenter. Since Sony gave the ERS-7 a completely different shape,
everything concerning the robot interacting with its environment (e.g. walking, handling
the ball etc.) had to be redesigned.

Although the number of joints stayed the same, some of them changed in function or
position. Not all of the robots joints are relevant for robot soccer. (e.g. the newly de-
signed tail joints are not used for game play in RoboCup) but some changes were more
important. The biggest changes that have an impact on RoboCup concerns are the head
joints. Like in the ERS-210, there are three joints for the head motion. On the ERS-210
these were: one pan joint (located inside the head), one roll joint (also located inside the
head) and one tilt joint (located inside the robot´s body core). On the ERS-7 the roll
joint was replaced by a second tilt joint (located inside the head). Also the position of
the pan joint was changed (from inside the head (ERS-210) to inside the robot body core
(ERS-7)).

CHAPTER 3. TUNING FOR THE ERS-7 14

Also the motors moving all the joints of the ERS-7 have significantly more power then
their equivalent in the ERS-210. Sony did not provide any specification sheets for that
but our tests have shown it.

Apart from the joints the button interface was changed, too. The ERS-210 had two
buttons on the head and one button on the back. All of them were physical buttons
which means that they had to be pressed.

The ERS-7 has four buttons: one on the head and three on the back; all of them are
electro-statical buttons which means they only have to be touched.

Sony also did some work on the robot’s computer core. The ERS-7 has 64 megabyte of
physical memory which is twice the amount of RAM compared to the ERS-210A. The
processing power was also improved for the ERS-7, it now has a 576 MHz CPU compared
to the 384 MHz CPU of the ERS-210A. The W-LAN(802.11b) which was optional on the
ERS-210 is now built-in.

According to the technical specifications the camera was improved on the ERS-7. The
resolution of the old camera was 176 x 144 pixels on the UV channels (color information)
and 352 x 288 on the Y channel (brightness information). The resolution of the new
camera is 208 x 160 on the UV channels and 416 x 320 on the Y channel. Unfortunately,
this improvement is only of limited advantage, as the camera also introduced previously
unheard of problems like lens distortion and insufficient color correctness, which in the
end renders the new camera’s images worse than those of the old camera.

3.2 New SDK

Since the introduction of the ERS-7 into the team it showed problems in frequent shut-
downs. One of the main causes was ”jamming” which means a malfunction in the joints
of the robot. This occurs when the robot tries to address a joint angle which cannot be
obtained physically. The ERS-7 has a built-in protection to prevent the robot damaging
itself. This protection is called JamDetection. The new SDK offers two new methods to
control the JamDetection. The first method is the notification of a JamDetectionThresh-
old. When the default JamDetectionThreshold value is too strict, the programmer can
add the following line to the file VRCOMM.CFG in the folder /OPEN-R/SYSTEM/CONF/:

JamDetectionHighThreshold

But this did not solve the shutdown problems. Another method which unfortunately
includes the risk of damaging the robot is to delete the EmergencyMonitor from the
code for the robot. The EmergencyMonitor controls all processes of the robot and is
the protection against the robot damaging itself. It is responsible for any emergency
shutdown. Deleting this monitor solves the problem of the shutdowns of jamming, but any
other protection against problems like battery overcurrent is also deleted. This method
requires careful controlling of the robot by its user to prevent the robot from any damage.

3.3 Software changes

The new hardware forced us to change the software in all modules where modified hard-
ware like joints or sensors is used. On some solutions this is reflected only in some

CHAPTER 3. TUNING FOR THE ERS-7 15

parameter tuning or changes, but on others there was more work to do.

3.3.1 Development of a new walking gait

As far as new hardware was concerned, a new walking gait was required. The InvKin-
WalkingEngine was used to develop such a gait (see chapter 3.9.1 in the GT2003 Team-
report [5]).
Basically a walk consists of several foot positions resulting from a given parameter set of
joint angles for each leg. The actual walk is based on a rectangular shape which seperated
a movement cycle into 4 phases (see fig. 3.3):

1. ground phase

2. lifting phase

3. air phase

4. lowering phase

Figure 3.3: Step cycle: on the left side one can see how the different phases belong to the
step cycle of the robot. On the right side one can see the timing of the cycle.

The aim is to find a parameter set which allows a robot to move fast from one point to
another. For the ERS-210 useful parameters have already been found, but used on an
ERS-7 they were completely useless.

In order to find appropriate parameters quickly, the (1 + 1) evolution strategy was used.
It belongs to the family of the (µ + λ) evolution strategies. µ is the number of parents
from which λ offsprings are generated. So in our case we started with 1 parent, created
1 offspring and then we compared them with a fitness function F. A fitness function
is a function which is used to select individuals for mutation and crossover in the next
generation.
The evolution strategy we used was also equipped with a self adapting mutation strength,
the so called 1/5th-rule, which means that on average 1 of 5 offsprings should be better
than its parent. If more offsprings are better, the mutation strength will be risen. Instead
if the amount of weaker offsprings increases too much, the mutation strength will be
lowered. For further information see [13].

CHAPTER 3. TUNING FOR THE ERS-7 16

A movement is basically controlled by the 4-Tuple [dx, dy, dθ, dt]. dx describes the move-
ment progress to the front or to the back, dy the progress sidewards, dθ indicates the
degree of movement around the vertical axis of a robot, and dt specifies the time in which
each of the three movements should have been done (see fig. 3.4).

Figure 3.4: General movement of a robot

There have been two approaches to develop a new walking gait. In both the robot starts
from one goal point and tries to reach the opposite goal point in a specified amount of
time. A goal point is defined as the center point of the goal line.

First Approach

In the first approach, the robot corrects his walk direction using its self locator, so the
movement was described as [dx, dy, dθ, dt], while dy and dθ depend on the directional
correction of the robot (see fig. 3.5(a) on the next page). Due to the fact that the hardware
of a robot is not placed absolutely symmetric, the center of gravity is not perfectly in the
center of a robot. For this reason a robot will always have to correct its direction during
a walk.
In this approach the fitness of a parameter set is mesured by the distance g reached at
the end of a walk. So the fitness function of the first approach is:

F = g (3.1)

The predefined time in both approaches is chosen in a way that the robot reaches the
opposite penalty area due to the fact that the self locator has an accuracy of about ±10
cm and the friction of the ground might not be constantly the same on the whole field.
So a longer distance leads to minor errors in the measurement.

procedure of the first approach:

The robot:

CHAPTER 3. TUNING FOR THE ERS-7 17

1. aligns at a goal point looking straight ahead to the opposite goal,

2. walks ahead while localizing and correcting its direction,

3. stops after a predefined amount of time and localizes,

4. measures the reached distance and compares it with the distance reached by the
parameter set of the parent generation,

5. moves to the nearest goal point and restarts.

Second approach:

The main idea of the second approach is to achieve a fast walk without any correction
of the direction, so the movement is given as [dx, 0, 0, dt] (see fig. 3.5(b)). The fitness
function F consideres the distance g and, in difference to the first approach, the deviation
h to the real straight walk too. So the fitness function of the second approach is

F = g − β ∗ h (3.2)

where β weights the straightness when calculating the fitness of a parameter set, which
allows to define the importance of the deviation during the evolution.

procedure of the second approach:

The robot:

1. aligns at a goal point looking straight ahead to the opposite goal,

2. walks ahead without any correction of the walk direction,

3. stops after a predefined amount of time and localizes,

4. measures the reached distance and compares it with the result of the parent,

5. moves to the nearest goal point and restarts.

In both approaches a parameter set of an offspring, which is better than its parent, is
evaluated 2 - 3 times to ensure that it is worthwhile to proceed the evolution with that
new parameter. If this is really the case, a new generation starts and the last offspring
becomes a parent.

Due to the fact that the first approach allows more than only one robot to walk on the
same playing field at the same time, which is not the case in the second approach, where
a collision cannot always be prevented without intervention by external control instances
like for example a human, the Microsoft Hellhounds mainly focused their evolution on
the first approach and achieved a 34 ±1 cm/s walk.

CHAPTER 3. TUNING FOR THE ERS-7 18

(a) First approach (b) Second approach

Figure 3.5: Different evolution approaches

3.3.2 New kicks and MOFs

Because of the changes to the ERS-7, i.e. its modified physical dimensions (see chapter 3.1
on page 11), the 2003 versions of all movements were rendered ineffective: the kicks and
catches which require the ball to be in front of the Aibo failed, while the kicks which need
the ball to the side of the Aibo worked, but only barely. These had to be tuned and new
moves for the kicks with the ball in front of the Aibo had to be designed.

That is why we created new kicks. Normal kicks are motion files from now on referred to
as “MOF” files, due to their .mof file extension. There are other possibilities to kick the
ball. For example a head control (see chapter 2 on page 6) mode can be created, which
lifts the head up, turns it to a side, then takes the head down and turns it to the other
side. If a ball lies in front of the Aibo, it can kick the ball with such a head control mode.
Or the Aibo can simply run against the ball, inducing its momentum onto the ball.

For the GermanOpen 2004 (see chapter 7.1 on page 65), only MOF kicks were used, but
motion files can be used in other situations as well. For instance, while we created a
number of new kicks, we couldn’t find suitable movements to be able to kick the ball
into every direction desired. So, we decided to let the robot approach the ball, then let
them turn until they reached an angle to the ball which would allow one of our kicks
to move the ball into the desired direction. Initially, we tried to do the turning via our
motion engine. Unfortunately though, we quickly realized that this engine was not precise
enough without visual input, which could not be provided, since the Aibo´s head in these
circumstances was already over the ball and could not see it (see fig. 3.3.2). Additionally,
this approach would cause serious maintenance work every time we incorporated a new set
of walking parameters. So, we approached this problem with mofs as well. We designed
mof parameters which would turn the robot around a fixed point by 30, 60, 90, 120 and
180 degrees, respectively. This seemed to work well in our test games against the ERS-210

CHAPTER 3. TUNING FOR THE ERS-7 19

Figure 3.6: An Aibo which turns around a ball and cannot see it. To illustrate this the
opening angle of the camera is lit.

robots. Either, the new robots were fast enough to have the turn completed, before any
interfering ERS-210 would arrive and even if the ERS-7 didn’t have the time, it would
have enough power to push the smaller ERS-210 out of the way and complete its turn.
However, in the first games against other ERS-7 robots, this didn’t work as the ERS-
7s wouldn’t be pushed away and the kick failed. So, we eventually decided against the
strategy of turning around the ball via mof special actions.

We also used motion files for cheering (see chapter 8 on page 73).

MOF file description

Short patterns of motion are written in files. Such files are called mof (motion file) and
have the extension “.mof ”. One such example can be seen in figure 3.3.2. In the first
line of the file, a name must be specified via the motion id keyword. Every normal kick
has one label called start, these labels are used as entry points. More than one label can
be defined to create several entry points. The default entry point of a mof is specified in
the file “extern.mof”. The last line of a mof contains the return instruction: “transition
allMotions extern start”. Between the entry point and the return instruction there are
so-called “motion vectors”. There are two kinds of vectors, joint and pid vectors. Via
the pid vectors pid values of a servo gain are set (see capter 2 on page 6 or fig. 3.8 on the
following page). The line starts with “pid”, to mark the line as a pid vector. Then the
p, i and d values need to be set. This kind of vector is only used in wakeup motions, to
switch off and reset the joints (see fig. 3.3.2 on the previous page). If a value is irrelevant,
it is marked as “don’t care” with “˜”. More important is the joint vector (see fig. 3.9(a)),
which is used in nearly every kick. It is a sequence of 20 values, 18 joint, 1 status, 1 time
(for don’t care the “˜” is used, too). Time means the delay time until the next vector
can start. The status value determines whether the joint movement is interpolated over
the time value (value = 1) or as fast as the joint servos allow (value = 0). The first three
values of the joints represent the head joint values, the first is the headTilt1, the second
the headPan and the third the headTilt2. The next value is for the mouth and the next

CHAPTER 3. TUNING FOR THE ERS-7 20

Label Return instraction

Joint vectorPID vector

comment

Don`t care

Kick ID (Name of the Kick)

Head value

Mouth and Tail value

Fore right leg Status (interpolate)

Time to execute

Figure 3.7: “wakeUp” mof as example for a motion file

Pan

Tilt1

LegFR1

LegFR2

LegFR3

Roll

(a) Overview of the joints of a ERS-210

Pan

Tilt1
Tilt2

LegFR1

LegFR2

LegFR3

(b) Overview of the joints of a ERS-7

Figure 3.8: overview of the joints of ERS-210 and ERS-7. The roll joint of the ERS-210
has changed to a tilt2 joint of the ERS-7

CHAPTER 3. TUNING FOR THE ERS-7 21

headTilt

headPan

neckTilt

mouth

tailPan

tailTilt

legFR1

legFR2

legFR3

legFL1

legFL2

legFL3

legHR1

legHR2

legHR3

legHL1

legHL2

legHL3

status

time

}

}
}
}
}

Haed

Left

Right

Left

Right

Fore

Hind

}
}

(a) the format of the joint data vector

"pid"

name

p value

i value

d value

Mark

Joint name (headPan, legFR1)

}PID value
(b) the format of the pid data vector

Figure 3.9: overview of the type of data vectors of a mof file.

(a) Overview of Mof Tester Dialog with
BashPrecize as example for a motion

Motin Selector

Special Action Selector

(b) Overview of the MotionTester dialog

Figure 3.10: mof and motion tester dialog

two are for the tail. Then four triplets follow, one triplet for each leg, the first leg is the
front left one, the next is front right, then behind left and behind right. The values of the
triplets are for the joints from core to paw (see fig. 3.3.2 on the previous page). To make
a motion file more readable, comments may be inserted, which will start with two “\”.

Tools

RoboControl has two dialogs, used to create new motion files, called “MOF tester” and
“Motion tester” [5]. The “MOF tester” dialog (see fig. 3.10(a) on the following page) has
an edit box and 6 buttons:

• Read

• Execute

• Execute in SlowMotion

CHAPTER 3. TUNING FOR THE ERS-7 22

Pan

Roll

Pan

Tilt1

Tilt2

Tilt1

Figure 3.11: 3 headjoint values pan tilt and roll. The roll joint of the ERS-210 had
changed to tilt2 in the ERS-7

• Stop

• Convert

• Mirror

The “Read” button reads the current joint values of the connected and inserts the joint
vector into the edit box, the “Execute” button sends a motion request with the selected
joint vectors from the edit box to the robot, and the button called “Execute in SlowMo-
tion” multiplies a delay value from the editbox right next to the button to the motion
request before it send it. The “stop” button immediately stops the Aibo’s motion, the
“convert” button converts the motion into raw data which is a format that can be placed
in the source code and the “mirror” button switches the right side joint values to the left
and vice versa, this can be used to mirror a kick to the left easily to get a exactly same
kick to the right. At the beginning of the project group, there was a conflict with the
head joint values. Due to the ERS-7 head only having the pan joint moving sidewards (as
opposed to the ERS-210 head having two, the pan and the roll) (see fig. 3.3.2) updates
to the “MOF tester” had to be made, adapting to this new joint layout.

Using the “MOF tester” requires the use of a bug workaround. Since in the Debug solution
of the motion control module a bug occurs, that won’t allow to reset the joint gains, the
Aibo needs to be booted with the Default solution and then switched to Debug. This
ensures the Aibo performs its “getup move”, which automatically resets the gains, before
switching to debug mode.

This bug has not yet been fixed since it is deeply rooted in the framework. Since for
testing MOFs there needs to be a connection established with robotcontrol anyway, this
does not cause much overhead complications.

With the “Motion tester” dialog (See fig. 3.10(b)), motion files can be executed. Here
they are called special actions. The ”Motion tester” has a combo box, a send and a reset
button. In the combobox, the motion type will be selected for special actions such as
specialAction and a new combobox will appear, with all available special actions. The
selected specialAction will be executed in a loop from a send command until the reset
button is triggered.

CHAPTER 3. TUNING FOR THE ERS-7 23

To execute a motion with the motion tester, it must be registered in the code as a
special acion, the default solution has to be selected in the motion control module and
the behavior must be disabled (as it would overwrite any motion request otherwise). To
register a motion, the joint vectors must be saved in a file in the mof directory, the
MotionRequest.h and the extern.mof must be updated.

Tuning a mof

There are several ways to tune a movement, it can be made faster, stronger or more
precise. It is difficult to tune a movement though, one problem is that often a faster kick
is softer or less accurate. On the other hand an opponent can disturb a slow shot more
easily. It might place itself in the shot path or push against the robot, thus interfering
with and possibly destroying the entire motion sequence.

The “MOF tester” cannot be used to tune a kick, because if the DebugMotion is running,
the engines are weaker and slower, therefore, for each change it is necesary to compile and
create a new memory stick. This would take a lot of time, however, this can be improved
with a small trick: To test modified versions of one motion, files from other motions can
be used. So more than one change can be tested with one compilation. The “overwritten”
motions should be carefully backed up though, so they can be restored, once the modified
mof is finished.

Before movement tuning can start, the movement in question must be thoroughly anal-
ysed, tested in several scenarios and setups and all observations should be noted metic-
ulously. Often a change makes the motions better at some scenario while it weakens
the motion in another. We selected scenarios which are important in games and defined
what makes a result acceptable. Then we subsequently left out different vector lines of
the motion to find out which steps were important for the result and which could be left
out. Usually we changed only one joint vector at a time, because it is easier to find the
right value that way. Often when we tried to change several joint values, we encountered
problems to identify the “correct wrong” value.

For example we have created a new backward kick called “MSH7NewBicycle” which is
composed of three actions: 1) the catches the ball, 2) it lifts it up onto its neck, and 3)
it sits up and the ball rolls down the back. One problem was that the kick would take
more than 3 seconds to execute, which would break a rule called ball-holding (Rules see
section Rules 2.1 on page 6). So the kick was in a first phase tuned that it took less than
3 seconds, but by doing so it became inexact: the ball would roll backward but strew. We
considered this as acceptable though, because we created the kick to get the ball away
from the border and the kick accomplished that. A second problem though was that if an
opponent knocked against our robot, it would lose the ball. This can become a problem,
because if this happens near the own goal, the ball might incidentally roll into it; this
in fact occured during the AmericanOpen (see 7.3.2 on page 72). We have tried many
changes but none has solved this problem. Eventually, we found out, that the Aibo only
lost the ball when the opponent knocked from the side where the Aibo wanted to lift up
the ball from. That is why we decided to create two kicks, one that lifts the ball over the
left side and one over the right side. Despite all these efforts the kick didn’t stand the
test of time as the decision of which of the two versions to chose depended on a working
opponent robot detection. Unfortunately, this opponent detection could not be provided
to date, so we had to dismiss this kick as we did not want to risk scoring own goals.
(see 4.3.8 on page 39)

CHAPTER 3. TUNING FOR THE ERS-7 24

Our self-made MOFs

All the MOFs we created fall into four categories:

1. Kicks that were used during the games

2. Turn movements

3. Cheering/Audience amusement

4. MOFs that were discarded

The first category includes all those MOFs that were in fact used during the games to kick
the ball in some direction. The second category includes all turning moves that are used
to cover situations, where the robot is positioned inappropriately towards the ball for any
of our kicks. These movements align the robot to enable it to use one of the normal kicks.
The third category includes all MOFs, that are not suited for ingame use, but are in one
way or the other visually impressive, stunning or just too entertaining to be kept from
the public. The fourth category includes all those MOFs that ultimately were not used at
all, because they didn’t work at all, were inferior to other moves of equal kind or rejected
because of no use for the behavior because the situations the kick would be useful do not
occur frequently enough or require a degree of self-localization which simply cannot be
provided by current means.

MOFs we used in the games
The kicks MSH7NewBicycleFromLeft (fig. 3.12), MSH7unswBash (fig. 3.13), MSH7SlapLeft

(fig. 3.14 on the following page) and MSH7LeftHook (fig. 3.15 on the next page) actually
were used for the games.

(a) catch ball (b) put ball to right (c) put ball in neck (d) sit and stay up

Figure 3.12: MSH7NewBicycleFromRight

(a) ready (b) catch ball (c) lift arms (d) hit ball

Figure 3.13: The MSH7unswBash was taken from last year´s code and adapted to the
new robot.

CHAPTER 3. TUNING FOR THE ERS-7 25

(a) ready (b) lift arm (c) hit ball (d) finished

Figure 3.14: The MSH7SlapLeft was created to quickly move the ball from the border by
hitting it from above with the left arm.

(a) ready (b) get behind ball (side
view)

(c) get behind ball (front
view)

(d) hit ball

Figure 3.15: The MSH7LeftHook is a strong forward kick.

Turning MOFs
We created MOFs to turn around the ball for 30,60,90,120,180 degrees to the left or

right and called them “MSH7Turn + direction + angle” (for instance MSH7Left90),
because for a few angles, especially for angles over 90 degrees we did not find any suitable
kicks. For the turning motions the ball must lie in front of the Aibo, then the Aibo
lifts up and holds it with its front legs, so that the opponent cannot reach the ball,
and then turns for the specified angle. We used this for testing only, due to reasons
specified above see 3.3.2 on page 16, and replaced them later by a special walking engine
InvKin:MSH2004TurnWithBall (see 3.3.1 on page 13).

MOFs for cheering/audience amusement
We created some kicks, which are nice to watch, but really aren’t of any use for a game,

because they are too slow or weak or do not even work the way we intended them to. So
we did not use them except for cheering/show-off reasons. Such kicks include the like of
MSH7FakeKickRight/Left, MSH7ComplicatedKick and MSH7StrangeBackSlow. Except
for these kicks, which were downgraded, we also created motion files for cheering, e.g. for
the DemoStick, Chapter 8 on page 73, that were never meant to be used in game, but
explicitly created for audience display.

• MSH7FakeKickRight
The MSH7FakeKickRight catches the ball, then hits it with the left paw to roll it to
the right paw. Then the right paw hits the ball and only then the ball rolls forward.
Slow and unusable for a game, but visually impressive.

• MSH7ComplicatedKick
If the Aibo executes the MSH7ComplicatedKick it will only move one single joint
each motion step. This takes a lot of time, but it is nice to watch, because the
motion looks like“robot stop motion”, again this was used for audience amusement
only since it was no good for a game.

• MSH7VanGogh

CHAPTER 3. TUNING FOR THE ERS-7 26

We also created a motion, which tears the robot’s ears off and called itMSH7VanGogh.
This motion was initially not meant for cheering. As the ears seriously hindered
some of our kicks (especially the MSH7NewBicycle kicks), we wanted to get rid of
the ears. Unfortunately, at game start the robots needed their ears put in place by
official ruling (see 2.1 on page 6). So, our only chance of using those kicks was to
let the robot remove their ears themselves. Since this action took quite some time
(even though it was perfectly legal), officials later allowed all teams to start a game
with their ears off, so our vanGogh move later was degraded to cheering/amusement
status.

Rejected MOFs
We rejected some of our MOFs for different reasons like the kick not seeming desirable

in any scenario. Such a kick is the MSH710cm, which reliably moves the ball forward for
10 centimeters, which is of no use since in that case it should rather be dribbled forward.
In other cases the kick did not work at all like the MSH7ABombBehind (the Aibo often
moved the ball in many different unpredictable directions). Some kicks were superceded
by other, more efficient MOFs like the MSH7ForwardLeft for example.

Chapter 4

Image Processing

The ImageProcessor module is analyzing the image sensor data of the robot. Mainly
objects allowed on the playing field are recognized by the image processor [see Rulebook].
So the image processor is the only module that provides input data about the vision of
a robot while playing soccer. The legacy image processor from the GermanTeam-Release
2003 is the GT2003ImageProcessor [5].

4.1 Motivation

One of the first tasks of the projectgroup to acquaint itself with the GT-Code was to
make several specialists of the GT2003ImageProcessor more scalable. For example the
Ball Specialist of the GT2003ImageProcessor used a fixed number of points at the edge
of a given orange ball in a frame, which were taken into account to calculate the circle
which fits best the seen ball. It was regarded as a good enhancement to dynamically
set this value higher or lower depending on free processing time. Nevertheless it was
just a hack to enhance the scalability of an existing solution. In order to that it was no
surprise that soon the idea was born to implement a new, clean Image Processor from
scratch, which would overcome the limitations of the existing ones. A modular concept
was demanded, which divided the tasks of the Image Processor in Ball, Goal, Landmark,
Field and Opponent detection. In this context the main idea was to give dynamically
priority to those tasks, which are most important in a given situation. In order to make
this possible the Image Processor would have to have control over each specialist. To
guarantee even more scalability the rastersize (i. e. the amount of lines/ rows considered
in calculations) and therefore processing time should be adjustable too, not only global
for all specialists but individually changeable for each of them. All in all the new Image
Processor should be able to dynamically switch between optimal results in a reasonable
processing time at the one end, and fast approximative solutions at the cost of accuracy
of the detected objects at the other end. With this concept in mind work on the Raster
Image Processor (RIP) started.

At the beginning of the project we analyzed the preconditions of our plans to implement
a virtual robot playing soccer. We were dissapointed about the self-, ball- and opponent
localization. We found out that the most of the accuracy isn’t lost in the locator so-
lutions of the German Team Release, but in the image processing solution. Therefor it
was our aim to increase the accuracy of the detection algorithms while decreasing their
misconceiving. Since one of our main intentions was to implement resource sharing for

27

CHAPTER 4. IMAGE PROCESSING 28

the robots, we wanted to have the ability to schedule the work of the image processor.
The GT2003ImageProcessor did not support this feature and the most of its detection
algorithms weren’t scalable.

4.1.1 Color Correction

The image provided by the ERS-7 robot isn’t provided equally over all the area of the
image. Especially in the corners of the image it is too blue and a little bit dark. So we
needed a pixel based color correction. This wasn’t done by the PG, but by a faculty staff
member. He implemented a look up table with correction values for each pixel of the
image. With this table every pixel on the image can be corrected. The correction can be
individually adapted to every single ERS-7 robot. This is done by some color coefficients as
input data for the look up table creation, which are calculated from some test images taken
out of several robots. Our intention was to use this color correction directly in the scan
process, without correcting the whole image. Since we wanted to use the ColorTableTSL,
we had to integrate the color correction in ColorTableTSL-Calibration-Tool. Otherwise
the color classification is defective if the robot uses the color correction.

(a) Original image (b) Corrected image

Figure 4.1: Image as seen by an ERS-7 on the playing field

4.1.2 Supporting Color Tables

The ColorTable module represents the classification of several color classes of interest.
That means a disjoint definition of semantic colors like black, orange or pink in the
colorspace. An example for such a classification is shown in 4.2(b).

The GT2003ImageProcessor was implemented for use with ColorTable64 and doesn’t
support any other ColorTable-module. Since the GermanTeam has more than one imple-
mentation of the ColorTable module, we wanted to have a image processor that supports
the ColorTable module in general. The two additional solutions for the ColorTable module
we wanted to use are the ColorTableTSL[8] and ColorTable32K.

4.2 EdgeDetection

To efficiently detect the shape of objects in an image, we firstly need some feature points of
these shapes. We call them edge points. Almost every detection algorithm ,we considered

CHAPTER 4. IMAGE PROCESSING 29

(a) Original image (b) Image classified by ColorTable32K

Figure 4.2: Image as seen by an ERS-7 robot on the playing field.

to implement, needs some pixels of the object’s outline. So we wanted to be able to detect
these feature points.

We define edge points as pixels that have a large difference of brightness and color com-
pared to their neighbours. To detect such points we wanted to use a simple kind of spatial
filter, that generates an amount of edginess for a pixel. After a few tests with different
filters we decided to use some simple first derivative gradient filters [9] shown in figure 4.2.
The image is provided in the YUV colorspace. We use all 3 dimensions to calculate the
edginess of one pixel. Let’s see how the horizontal edginess eh, vertical edginess ev and
the cross edginess ec are calculated:

eh = |h1y − h2y|+ |h1u − h2u|+ |h1v − h2v| (4.1)

ev = |v1y − v2y|+ |v1u − v2u|+ |v1v − v2v| (4.2)

ec =
{

eh, if eh>ev

ev , otherwise (4.3)

Note, that ec is usually calculated with e2
c = horizontalgradient2+verticalgradient2 and

the direction of the edge can be calculated with arctan(vertical gradient/horizontal gradient).
With arctan(eh/ev) we can only differ between horizontal, vertical and square lines.

(a) horizontal gradient filter (b) vertical gradient filter (c) cross gradient filter

Figure 4.3: Basic gradient filters - Note, that p is the considered pixel. The green pixels
represent the neighbourhood used to calculate the edginess.

We combined these filters with a Bresenham line scan [2], the idea of non-maxima-
suppression and threshold hysteresis as used in Canny Edge Detectors [6]. This led to a
kind of edge scanner that iterates from pixel to pixel in a given direction, while searching

CHAPTER 4. IMAGE PROCESSING 30

for local maxima of their edge votes, if a edge vote is greater than the threshold et. This
edge scanner can improve the accuracy of detection algorithms and is reusable for every
ImageProcessor solution of the GermanTeam. We used the Cohen-Sutherland algorithm
for line clipping to be able to determine a starting point of a scan, if a scan line starts
beyond the image borders. What would be useful, but is not implemented yet, is to use
line clipping for searching the end point of a scan line.

In order to have a filter that detects edges that are aligned to the scan line, we implemented
one more filter for the scans, which is shown in figure 4.4 on the following page. The vote
of this filter el is calculated analogously to the horizontal and vertical gradient filter.

Figure 4.4: Scan line filter - Note, that p is the considered pixel. The green pixels represent
the neighbourhood used to calculate the edginess. The other highlighted pixels belong to
the scan line.

el = |s1y − s2y|+ |s1u − s2u|+ |s1v − s2v| (4.4)

Some results of a global edge analysis with the GT2004EdgeDetection, that is the im-
plemetation of the ideas described above, you can find in figure 4.2.

The advantages of this edge detection solution are:

• The performance on blurred images. Only a large amount of blur impacts the edge
detection.

• The running time to detect edges is low against global edge analysis.

• Reusable for every solution of the ImageProcessor module.

• Good quality/run time ratio.

The disadvantages are:

• The threshold et must be adjusted to the amount of contrast in the image.

• Responses a bit on noise, if the images are too dark.

• Difficult to use on small objects, that are not flat, like far away balls or corner
beacons.

Some more examples for the use of this edge detection implementation can be found in
section 4.3 on the following page.

CHAPTER 4. IMAGE PROCESSING 31

(a) original image (b) filtered image without threshold hysteresis

(c) filtered image with threshold hysteresis -
Note, that the detected edge points hold some
directional information about the edge they be-
long to.

(d) filtered image with threshold hysteresis -
Note, that the detected edge points hold some
color information from the original image.

Figure 4.5: Some examples of global edge analysis with the GT2004EdgeDetection. The
whole analysis runs with 80Hz on an 1.5GHz centrino laptop, without any optimizations.

4.3 Raster Image Processor

In consideration of our defined intentions we decided to implement a new solution for
the module ImageProcessor. It’s named RasterImageProcessor, from now on, referred
to as RIP. In the following subsections we will give an overview how we planned and
implemented the RIP.

4.3.1 Architecture

The most important intentions for the architecture were compatibility to the German
Team code and the reusability of the new implementation. Since image processing is a
difficult task, we thought about a redundant and modular class concept. For example
it should be possible to have different detection algorithms for the same kind of objects
without rewriting the whole image processor solution.

Now we give a brief description of the classes the RIP actually consists of:

• The class RasterImageProcessor is an extension of class ImageProcessor and a con-
text for the specialists and the strategy. It provides the image processor interfaces

CHAPTER 4. IMAGE PROCESSING 32

and extensions to them like color correction or the calculated horizon line. It also
holds a collection of specialists and one strategy. The strategy is executed every
frame.

• The class RasterStrategy is an abstract base class for all strategies of the RIP. An
implementation of this class decides what pixels are scanned and delegates a collec-
tion of specialists. It also has to provide the input data for the several specialists
(e.g. runs, feature points or even clusters of pixels or runs) it delegates.

• The class RasterSpecialist is an abstract base class for all specialists of the RIP.
An implementation of this class should provide a detection algorithm (e.g. player
detection, beacon detection).

Figure 4.6: Collaboration diagramm for class RasterImageProcessor.

• The class RDefaultStrategy is the default implementation of a RasterStrategy. It
implements two global scans. One is a simple horizontal scan, that has an higher
resolution near the horizon. The other scans perpendicular to the horizon line, while
starting on the horizon line and scanning away to the bottom.

Figure 4.7: Inheritance diagramm for class RasterSpecialist.

• The class BoxSpecialist implements a beacon and goal detection algorithm.

• The class RBallSpecialist2 implements the ball detection algorithm.

• The class RBridgeSpecialist. This specialist was written for the Open Challenge
2004 and detects the beacons of the platform.

CHAPTER 4. IMAGE PROCESSING 33

• The class REnemySpecialist is an implementation of the opponent detection algo-
rithm.

• The class RFieldSpecialist is an implementation of the line detection algorithm.

We have also written some utility classes and libraries that are used by the classes de-
scribed above, all of them are reusable:

• The class GT2004EdgeDetection implements the algorithms for the edge detection.

• The class RFieldStateMachine imlements a deterministic state machine that classi-
fies edge points on a scanline.

• The file SegmentationTools.h is a library with some collections like lists.

4.3.2 Clustering

Clustering is very important for object recognition purposes, because it is easier to detect
an object from a region of pixels rather than from single pixels. We decided to calculate
regions with pixels of one or more color classes, dependend on their useage in the various
specialists of the RIP. This can be done with the image segmentation algorithm which
has been introduced by James Bruce [4]. The algorithm will shortly be described in the
following:
Firstly an image is scaned in a grid with parallel scan lines, and store the classification of
the several pixels as a subsampled image via Run Length Encoding along the scanlines.
The scans must be ordered to have the capability to use the second step of this clustering
algorithm. If the runs, which are computed from the RLE, are sorted in the same way as
they had been encoded, we can look on two neighboured scanlines and connect the runs
that overlap as shown in 4.8 . To build the regions, we use a union find algorithm with
path compression [16].

(a) step 1 (b) step 2 (c) step 3

(d) step 4 (e) step 5 (f) step6

Figure 4.8: Illustration of the region merging algorithm.

CHAPTER 4. IMAGE PROCESSING 34

The RLE can be calculated in linear time. The merging of the runs to regions can also
be done in almost linear time. A disadvantage of this algorithm is, that it depends on
the color classification. If the color classification is bad the clustering of the pixels can
be defective. This is a very big problem for clusters of pixels with different color classes,
because the color classification of blurred edges is very difficult. For example an edge
between pink and yellow can lead to an orange area that splits an object with this two
colors in three regions, a pink, orange and yellow one. The pink and yellow regions could
not be connected because the orange region that represents the blurred edge, lies between
the two other regions.

We tried to handle this problem with a modification of the clustering algoritm described
above. The idea was to compare also on further lines than the neighboured ones. The
advantage of this approach is that even clusters of pixels with different color classes can
be connected quite well. The main disadvantage is that the running time is affected by
the number of neighbours we want to compare with every line.

Instead of the RLE we used a data structure which we call a Line Pair. A Line Pair
consists of two connected points on a scan line covering pixels of one or more colors. On
which color they start and on which they end is defined in the scan strategy of the RIP.
Basically a Line Pair extends a run of a RLE by the additional feature of covering pixels
of more than only one color class. Nevertheless it is obvious that the algorithm mentioned
above can also be used to cluster Line Pairs as well.

After the union find algorithm is done, we usually provide the regions as lists. What
could be done in the future is to integrate some additional calculations directly in the
clustering routine (e.g. bounding box, color variance, average color, median color, convex
hull or centroid).

4.3.3 Ball Detection

The problem of detecting a ball in the image can be reduced to detect orange circles in
the image. This is the main idea of the new ball detection implementation. One probleme
is that the ball can be partially concealed by other objects. Another difficulty is that a
part of a ball could lie beyond the image. So the algorithm for finding circles in the image
should be able to complete such circles and interpret them well.

To filter some areas of interest we use all orange clusters found in the area under the
horizon line as input data for the detection algorithm. Since only balls are orange on a
RoboCup playing field this is a useful and cheap filter for balls. A crucial capability is
now to be able to approximate a circle for one of those clusters and generating a validity
for the roundness of this cluster. This can be done by a randomized algorithm that needs
a collection of edge points ~e ∈ E := {~e0, ~e1, . . . , ~ek} as input data to approximate the
circle and giving a validity value for it. The authors of GT2003 already implemented a
function that calculates a circle from 3 points [5], so obviously we have the capability to
calculate a circle from 3 points in constant time. Let δ be the arithmetic average distance
of all edge points to the circle. ~m := m(x, y) is the center of the circle and r is its radius.
We can calculate δ with:

δ =

∑|E−1|
k=0 | |~ek − ~m| − r|

|E|
(4.5)

Now we can formulate the algorithm:

CHAPTER 4. IMAGE PROCESSING 35

Randomized Circle Fitting Algorithm (RCFA)

input: edgePoints[],m

output: selectedCircle = null;

variables: bestDist = 10000; dist = 0; circle = null;

repeat m times:

1. Select randomized 3 of the edge points and calculate the circle that lies on that 3
points.

2. Calculate the arithmetic average distance of the edge points to the circle and store
it in dist.

3. if (dist<bestDist)

selectedCircle = circle;

bestDist = dist;

With the Randomized Circle Fitting Algorithm we are able to approximate a circle that
has the smallest δ. To detect the needed edge points E for the RCFA we implemented a
heuristic that uses the edge scanner.

First we calculate the bounding box b of a given cluster C. The center of b is our starting
point for the edge scans. We have a selectable number n of scans that go in different
directions ~dk := dk(cos 2π

k
n
, sin 2π k

n
). Now we take the first detected edge point ~e of every

scan and put it in E. If a scan reaches the image border we’ll continue with the next
scan like we find an edge point. By default we make 30 scans for a cluster. After we
approximated a circle we calculate its validity. We found two qualities of the circle:

• The roundness αc ∈ [0...1].

• The color-pattern-consistency βc ∈ [0...1].

αc can be calculated with a modificated equation out of 4.5 on the preceding page. Let
dk be the distance of a pixel ek to the circle. We substitute the distance of a edge point
to the circle with a new value wk :=

{

1, if dk<=2
0, otherwise . And we come to:

αc =

∑|E−1|
k=0 wk

|E|
(4.6)

For the color consistency, we defined a pattern P that says that inside the circle is orange
and outside is green white, yellow, red, gray or blue allowed. Now we test a grid G
of 10 x 10 pixels ~pk in the area of the circle, if they meet the conditions of P . Let
ck :=

{

1, if ~pk meets the conditions in P
0, otherwise be the descision value for every pixel pi.

βc =

∑|G−1|
k=0 ck

|G|
(4.7)

Now we have a aproximation for a circle that can be calculated from a given cluster on
a frame and we are able to provide two validity values for the roundness and the color-
consistency. We decided to filter balls with the help of the two validity values directly

CHAPTER 4. IMAGE PROCESSING 36

in the image processor. If αc is less than 0.6 or βc is less than 0.3, we won’t create a
BallPercept [5] from the detected circle. A second test is that (αc + βc) /2 is greater
than 0.5. These threshold parameters were tuned by hand. This is useful if the color
classification is defective and classifies some pixels on other objects as orange. Such a
misinterpreted cluster can than be sorted out with the validation tests. Even orange
objects that differ only in their shape can be sorted out quite well.

The ball detection algorithm used in the RIP can be described as follows:

Ball Detection Algorithm

1. Sort all clusters by their size.

2. Select the greatest cluster Cm that has not been analyzed. If there is none, STOP.

3. Create some edge points with the scan heuristic described above.

4. Calculate a circle for Cm with a RCFA that has a scalable number of iterations to
approximate the circle.

5. Validate the circle. If the validity values are high enough follow with step 6, other-
wise follow with step 2.

6. Create a BallPercept. STOP.

4.3.4 Beacon Detection

The main difference between the RIP and the GT2003/04 image processor is that the im-
ages are mainly horizontally scanned. This choice leads to a completely different approach
for the detection of objects, especially for beacons. The beacon detection is effectuated by
a specialist called ’BoxSpecialist’, whose main characteristic is to create bounding boxes
on objects of a given color. Note that this specialist analyses the goals too, since both
have a rectangular shape and common colors.

The Beacon detection algorithm as used in the RIP can also be described as in the
following:

Beacon detection Algorithm:

1. Find yellow, skyblue and pink Line Pairs in the image in the region of the horizon.

2. Cluster the collected Line Pairs, without considering the colors (see 4.3.2 on page 29).

3. Sort the clusters in decreasing number of Line Pairs.

4. Sum up the length of the Line Pairs of the biggest segments, grouping them by
color. The validity test is based on these values.

5. If the proportion of a color is too small compared to the other ones, delete the
corresponding Line Pairs.

6. Select the clusters containing two colors, and check if the proportions are similar.
The segments that fill all the validity criteria is then considered as a landmark.

CHAPTER 4. IMAGE PROCESSING 37

As the shape of the obtained cluster is not always rectangular, we need to create a
bounding box of it. The horizon has been taken as reference for calculating its corners.
This approach has naturally its own limits, since the coordinates of the horizon vector
are sometimes inaccurate.
Next, the edge detector (see 4.2 on page 25) is used in order to enlarge the borders of
the bounding box, and to fit the real landmark exactly (see 4.3.4). Eventually, a beacon

Figure 4.9: A beacon detected by the Box specialist. The points representes edges

percept is generated using the four corners of the resulting bounding box, depending of
the color disposition.

4.3.5 Goal Detection

As we explained in the Beacon detection section, the RIP processes both goals and beacons
together in a specialist called ’BoxSpecialist’, for reasons of efficiency.

The only differences between them are the number of colors and the size. The following
goal detection algorithm has also a common part with the beacon detection algorithm:

Goal detection Algorithm:

1. Find all the skyblue and the yellow Line Pairs in the image under the horizon.

2. Cluster them without considering the colors (see 4.3.2 on page 29).

3. Sort the clusters in decreasing number of linepairs

4. Sum the length of the Line Pairs of the biggest clusters, grouping them by color.

5. Remove Line Pairs whose color is negligible compared to the other color.

6. Select the biggests clusters having only one color, and group them by color

7. For both groups: find adjacent clusters if any, and merge them

8. Output the biggest cluster

CHAPTER 4. IMAGE PROCESSING 38

Note: Step 7 of the algorithm is useful when one robot (usually the goalie) is positionned
in the middle of the goal, separating it in two parts or more.

For the same reasons as the beacon detector, the edge scanner enlarges the resulting
cluster for a better result (see the red and blue points in 4.10).

Figure 4.10: A goal detected by the goal specialist. The red and blue points are detected
by the edge detector.

4.3.6 Line detection

The lines situated on the field provide precious information for the robot’s localization.
In some cases, its position could even be determined instantly, without considering the
landmarks. A module able to recognize the overall configuration of the field would also
be helpful for an efficient localization. The Raster Image Processor contains a specialist
called “RFieldSpecialist”, who has been designed for the tasks defined above. The idea
is to represent the field geometrically using different points:

• The four edges of the areas surrounding the goals

• The intersection of the middle line and the borders

• The kickoff circle (not implemented yet, due to the complexity of the task)

• The corners

These points are estimated by intersecting the lines we find on the field.

We can see a goal corner in the previous picture. A self-locator taking into account this
point could be very useful, especially for the goalie, because the localization information
is situated much closer than the reference landmarks, giving more precise information.

But the Field Specialist has found another application in the Open Challenge in Lisbon.
More exactly, it was used to help the robot to climb the ramp by recognizing the red
line situated on it. As the ramp contains only one line, the Field Specialist has been
simplified in order to consider only the biggest line it finds. The angular value compared
to the horizontal is an indicator for the relative position of the robot (see 4.4 on page 46
for more details).

CHAPTER 4. IMAGE PROCESSING 39

Figure 4.11: The goal area corner has been detected

We will now describe the principles of the Field Specialist.

The scanning method
Basically, the Raster Image Processor uses two scanning algorithms:

• An horizontal one, providing the main information (goals, ball, landmarks, etc)
during the prescan phase.

• A scanning method perpendicular to the horizon, providing some important infor-
mation about the configuration of the field.

The reasons why to choose two scanning methods as opposed to one, like the other image
processor does, are the following:

• Scanning an image horizontally can be done very efficiently, as the image points
are stored horizontally. A strategy of the RIP, called ’RDefaultStrategy2’ includes
several optimizations for this task.

• A scanning method is appropriate when a lot of its scan lines can intersect the objects
we want to recognize. For this reason, the scan lines have to be perpendicular to
the objects. Objects like the ball, the enemies, the goals and the beacons are not
strongly oriented, this is the reason why the first scanning method is sufficient to
detect them well.
The red line in the open challenge is vertical most of the time, and detecting its
orientation is crucial for climbing the ramp. The horizontal scan is also the only
solution. Finally, the lines and the borders of the field are mainly horizontal, this
is the reason the second scanning method is used.

The Field Specialist also combines the two scan methods in order to obtain the best
results in every situation.
Moreover, the second scan method, effected by a class called ’RFieldStateMachine’, is
able to differentiate the lines by giving an Id to them (yellow goal, skyBlue goal, field and
border).
This information makes the recognition of the intersection of the center line and borders
possible.

We will now describe the line recognition algorithm.

CHAPTER 4. IMAGE PROCESSING 40

Figure 4.12: Different intersection points on the field

The Line-fitting algorithm
The lines are repesented geometrically (with a starting and an ending point).

Input: point[];

Output: line[];

(a) the incoming list of points (b) the output lines, not necessary linked

Figure 4.13: The input and output data of the Line-fitting algorithm

1. First, the points need to be sorted.

Figure 4.14: the nearest points are linked together

For this task, a specific sorting algorithm has been designed. Before explaining
it in detail, we need to define the edges and Line Pair structures used in the Field
Specialist. Both derive from a structure called ’Figure’, which contains the following
attributes:

struct Figure {

virtual int id();

virtual Vector2<int> ToConsider();

Figure* next;

}

CHAPTER 4. IMAGE PROCESSING 41

The first attribute is an id: it defines the scan line that was used to find the figure.
The second one is the point to be used in order to calculate the distance between
two figures.
The third one is a pointer to the next figure.

Now, we can define the methods formally, and the algorithm itself:

E := {f1, f2, . . . , fn} : the set of figures
C(f) : the center of a figure.
I(f) : the id of a figure.
s(f) : the successor of f
S(f) : the set of successors starting from f
G(f) := {e ∈ S(f) | I(e) = I(s(f))}
H(f) := G(f) ∪ {s(last(G(f))}

The sorting algorithm:

Iterate the list: let e be the current element.

(a) find m := mini∈H(e) dist(C(i), C(e))

(b) swap s(e) and m

Complexity of the algorithm:
In the practice, the algorithm is quasi linear, as the number of consecutive figures

having the same id is very small (maximum 4 or 5 elements)

Here is an illustration of the algorithm:

• Red : The figures (in this case, Line Pairs)

• Black : The pointers of the list

• Numbers: The id of the lines

(a) The input lines (unsorted) (b) The output lines

Figure 4.15: An illustration of the sorting algortithm using Line Pairs

2. For the second part of the Line-fitting algorithm, we choose points sufficiently spaced
to form a sub line. If a sequence of sub lines defines equivalent angles, they are
merged. If this sequence is big enough, it will appear in the output.

Here are the most important parameters of the algorithm :

CHAPTER 4. IMAGE PROCESSING 42

Figure 4.16: A representation of the sub lines

• Step : number of points to jump in order to form a subline

• Alpha : angular tolerance related to the sub lines (in degrees)

• Min size: minimum number of sublines required to form a line

Note that these parameters need to be fine tuned in order to obtain a good approxi-
mation, this is the reason why specific parameter sets have to be defined for specific
applications. Here are the default parameter set values:

size :6, step :5, alpha :20

The results on the field:

• The pertinence of the result is strongly determined by the quality of the incoming
points. As most of them comes from the post scan method of the RIP, a good color
table is required to obtain accurate points in a sufficient number.

• The line recogniton is quite good as long as the parameter set is well defined. Too
low value of the alpha parameter leads to an exaggerated number of lines.

• As many other line detection algorithm, the corners defined by two adjacent lines
is not well recognized. This is the reason why output lines are not adjacent. But
we can simply intersect them to obtain the desired point.

• The angle values of the sub lines (as defined in 2 on the previous page) can sometimes
fluctuate beyond the threshold of the algorithm, although the points are more or
less planar. In this case, a final processing phase is needed: distant lines having the
same angular value have to be merged (a function has been designed for this task).

• Lines situated beyond half of the ground are poorly detected, since they are too
thin to be recognized by the color table (see 4.3.6 on page 35).

We will now talk about the implementation of the line-fitting algorithm. It is based on a
library defined in the ImageProcessorTools repository.

CHAPTER 4. IMAGE PROCESSING 43

The library ”SegmentationTools.h”
Here is a description of the tools developed:

1. Slist : template class who differs a bit from the standard implementation. It can
naturally be used in other domains than image processing. It was created since
the standard list doesn’t allows to make special operations like swapping elements,
and wasn’t very efficient when a lot of elements are stored. The main difference
between it and the others lists is that the stored objects contains the pointer to the
next element. The slist can also been viewed as an interface that allows to do safe
operations on elements pointers.

2. Data structures representing edges and Line Pairs. These structures derive from
a class called ’Figure’. The advantage is that edges and Line Pairs can be stored
together, wich is very convenient when using several scanning methods, like the
raster image processor does. (see the explanation of the Line-fitting algorithm for
more details).
The library contains several data structures for representing a Line Pair (LinePair2,
ExtLinePair, etc).

3. Geometrical functions : to compute angle values. The emphasis has been given to
calculation speed.Here are the most important ones:

• AngleRelativeToHorizontal(point p1, point p2) : returns a number between 0
and 360 using trigonometric functions.

• theta2 (point p1, point p2) : same as the precedent function, but approximated.
Note that only the first one has been used to compute angle values in the Line-
fitting algorithm.

4. Sorting functions: makes the interpretation of a series of figures possible (corre-
sponds to the first phase of the poly-line algorithm).

Note : The majority of the function defined aboved have been designed to work with the
slist included in the library.

CHAPTER 4. IMAGE PROCESSING 44

4.3.7 Obstacle detection

The obstacle detection has to find some free area between the robot and correspond-
ing obstacle points like defined by the obstacle model of the GermanTeam code [5].
To provide data for this model we had to fill the obstacle percept also used by the
GT2003ImageProcessor [5]. Obstacle points are defined as bottom points of robots, goals,
borders or unknown objects on the field.

Since the robots are playing on a green playing field the free area is mostly green, except
there is a line between the robot and a obstacle point on the field. Because the obstacle
detection of the GT2003ImageProcessor has a quite well performance, we decided to
implement the same idea of detection algorithm like used in the GT2003ImageProcessor.
The GT2003ImageProcessor scans perpendicular lines to the horizon and decides with a
kind of state machine, mainly depending on the color classes of the pixels of the scan line,
what kind of obstacle point has been found. The free area in front of the point is also
detected.

We reimplemented this idea in the RasterImageProcessor by using theGT2004EdgeDection
to scan a grid of n scan lines perpendicular to the horizon. The scan lines start on the
calculated horizon line, while the direction of the lines points to the area under the horizon
line. To get information about the color classes of the pixels between two edge points, we
run length encoded the color classes appearing on a scan line, while scanning from edge
to edge. A state machine called RFieldStateMachine is now determing the kind of edge
point found in the image due to reading from the color class buffer of the edge detection
after it found this edge point. After a scan line has been finished, all edge points found
on the scan line are classified and will be provided to the obstacles percept, if they are
are classified as obstacle points. Note, that a side effect is the classification of ball points
that could be used to detect balls in the image. Even edge points of lines are detected,
since the state machine has to seperate them from the border points. Since we classified
goal, border and line edge points with the help of the RFieldStateMachine, we are also
able to fill the lines percept used by the self locator.

Since the points in the lines and obstacle percepts are represented in the field coordinate
system the image processor must perform this transformation. We mainly used a cal-
culation method that depends on the camera matrix [5] of the robot. This is not very
accurate, because the camera matrix can not be approximated very accurate on a ERS-7
robot. What could be done is to optimize the approximation of the transformation from
the image coordinate system to the field coordinate system. This would improve the
accuracy of far edge points, that have to be provided to the lines and obstacle percept.

4.3.8 Opponent Detection

Opponent detection based upon the Raster Image Processor is mainly designed for de-
tecting Sony Aibos of type ERS-210. However it is possible to detect Aibos of type ERS-7
with few modifications to the color transitions.
Like in some other specialists of the RIP every frame is scanned horizontally (along the
raster) for Line Pairs. The first point indicates the transition from a non-opponent color
(green, white, orange, skyblue, yellow, nocolor) to an opponent color (red, blue, gray,
black) in the current scanline, while the second point of each Line Pair indicates the
opposite transition. (In order to detect Aibos of type ERS-7 it is necessary to consider
white as an opponent color.) After a complete horizontal scan of a given frame, all ob-

CHAPTER 4. IMAGE PROCESSING 45

jects mainly consisting of opponent colors are masked by Line Pairs. Note that only pixels
below the horizon are touched since all relevant parts of an Aibo, which are necessary to
determine its position are located below the horizon.

Figure 4.17: On the left a masked Sony Aibo ERS-210 is seen. The thick white line
illustrates the horizon, whereas the thin white lines are the Line Pairs. A green point
indicates the end of each Line Pair. A yellow point shows which point of the Line Pairs
of a given cluster is taken as footpoint. Note that the two Line Pairs near the red Aibo
(in its shadow and at the field line) do not belong to the cluster of the detected robot.
However they are not recognized as own opponents due to their low validity.

After this first horizontal scan, a postprocessing is needed to differentiate between Line
Pairs of different opponents. This is done by a segmentation algorithm, which clusters
Line Pairs, that are close together.

At this time we would like to get relative positions of the detected opponents. Therefore a
fixed number n of so called footpoints is calculated, which are the points used for mapping
to field coordinates. The easiest case is n = 1, where for each cluster, the point which is
furthest away from the horizon is taken as footpoint. The calculation is accelerated by
comparing only those points, which are either on the right side (horizon rises) or on the
left side (horizon falls). This point is then mapped to field coordinates relative to the
robot, which recognizes the opponent.

For n ≥ 2 the n farthest points from the horizon are calculated, which are then mapped
like in the case n = 1 to relative field coordinates. This leads to the question which point
to choose as the position of the detected opponent. In this context the Center of Gravity
Method is used, which simply means all coordinates of the field points (which are nothing
else than 2-dimensional vectors) are summed up and then divided by n. The resulting

CHAPTER 4. IMAGE PROCESSING 46

Figure 4.18: On the left again a picture of a masked Sony Aibo ERS-210, this time
using n=2 footpoints. On the right side the red square on the playing field indicates
the approximated position of the detected red opponent, which is calculated according to
Center of Gravity Method.

vector is a good approximation for the real opponent position and tests have shown that
values between 2 and 4 are optimal for n.

Here are the results of the two tests, which were conducted to measure the accuracy of
the calculated distance:

DistanceTest 1: The detecting robot has a fixed position in the yellow goal and looks
straight to the skyblue goal. The opponent is placed at the line between the recognizing
robot and the skyblue goal in a measured distance of 50, 100, 150, 200 and 250 cm, which
means the opponent is always seen at an angle of 0◦.

Table 4.1: DistanceTest 1 (all distances in cm)

real distance COG n = 4 COG n = 2 COG n = 1 Frame

50 51,4 49,6 49,4 27
100 115,9 106,8 105,5 322
150 173,4 163,3 161,6 596
200 227,9 211,8 207,7 927
250 328,3 295,9 284,1 1109

DistanceTest 2: The detecting robot has a fixed position in the yellow goal and looks
straight to the skyblue goal. The opponent is placed near the left border of the playing
field in a measured distance of 50, 100, 150, 200 and 250 cm.

CHAPTER 4. IMAGE PROCESSING 47

Figure 4.19: The table of DistanceTest 1 as diagram. The closer the calculated lines are to
the blue line, which indicates the real, measured distance, the better is the approximation.

Table 4.2: DistanceTest 2 (all distances in cm)

real distance COG n = 4 COG n = 2 COG n = 1 Frame

50 54,6 53,3 51,4 2
100 107,1 101,7 97 715
150 159,7 150,7 147,1 1240
200 209,3 196,6 184,9 1874
250 N/A N/A N/A N/A

Figure 4.20: The table of DistanceTest 2 as diagram. The closer the calculated lines are to
the blue line, which indicates the real, measured distance, the better is the approximation.

CHAPTER 4. IMAGE PROCESSING 48

Additionally a validity for the recognized clusters is calculated in the post processing.
Basically the amount of red and blue pixels in the cluster masked by Line Pairs and the
calculated distance are taken into account for that. Each cluster is only recognized as an
opponent if the calculated validity exceeds a certain threshold.

Problems in the performance

One problem detecting opponent robots mentioned in chapter 4.3.8 on page 39 is the
condition of the generated player percepts (compare chapter 2.3.2 on page 9).

A single player percept represents a position of a robot on the field. It is based upon one
coordinate which is assumed to be in the middle of the robot. A rectangle surrounds this
position.
The problem is that those percepts are generated on n coordinates calculated in the image
processing, which are the n farthest points to the horizon of an opponent. In consequence
of this a percept does not represent a players position accurately.

Another handicap might be the condition of an above mentioned line pair. A Line Pair
starts on every color which apears in a robot, in the current solution red, blue, gray or
black. To invoke on gray or black color implicates that all dark areas get considered in
the opponent detection, for example shadows or background. Further, opponent segments
can get extended by such darker scopes. Resulting disadvantages are ”ghost” opponents
(fig. 4.3.8 on the next page and fig. 4.3.8 on the following page), not detected ones (see
fig. 4.3.8 on the next page) or consideration of image space, wherein no opponent color
can be found(see fig. 4.17 on page 40).
Blue robots, especially of type ERS-210 are harder to detect because of the close distance
between blue and black color in the three-dimensional YUV color space (fig. 4.21 on the
next page) and a not perfectly adjusted color segmentation as a result of it, which is not
unusual dependent on current lightning conditions.

CHAPTER 4. IMAGE PROCESSING 49

Figure 4.21: appearance of blue and black color in the YUV color space

Summary of disadvantages:

1. Currently used percetps calculated on farthest points to the horizon basically do
only approximate player positions

2. Close opponents are not considered yet

3. Line Pairs do sometimes cover areas on the image without opponent color in or
around them.

(a) Original image (b) Segmented image with
debug drawings

Figure 4.22: ”Ghost” (marked by the black circle) opponents detected in the background.

(a) Original image (b) Segmented image with
debug drawings

Figure 4.23: ”Ghost” (marked by the black circle) opponents detected due to rough color
segmentation

4.3.9 Other Approaches to Opponent Detection

Unfortunately the first and the second point mentioned above have not been considered
in the following approach for the opponent detection yet. The main difference between

CHAPTER 4. IMAGE PROCESSING 50

(a) Original image (b) Segmented image with
debug drawings

Figure 4.24: Two opponents detected as one. (marked by the black circle)

the first and the alternative solution is the way of collecting Line Pairs and the way to
cluster them.
Line Pairs used in this approach represent a consecutive line of pixel and are defined as
a 3-Tuple (x1, x2, y). The point (x1, y) marks the starting, the point (x2, y) the ending
point of the Line Pair. On which color they start and on which they end is defined in the
strategy of the RIP.

The algorithm distinguishes two kinds of Line Pairs:

• Line Pairs consisting of opponent color only

• Line Pairs consisting of gray color only

The collected Line Pairs have to be clustered to create player percepts. Therefore an
alternative cluster algorithm has been created. The basic idea of this algorithm relies in
reducing the search space for coherent Line Pairs to their common horizontal position, so
the vertical position has not to be considered in this clustering.
An opponent cluster is defined as a 6-Tuple ((x1, x2, c, g, d, (x, y)):

• x1: Starting horizontal position

• x2: Ending horizontal position

• c: Amount of opponent colored Line Pairs

• g: Amount of gray colored Line Pairs

• d: Greatest distance to the horizon

• (x, y): Coordinates of the furthest point to the horizon

A 1-dimensional array A[] = {A[0], . . . , A[n− 1]}, n = imagewidth, stores information
of horizontal starting and ending positions of all collected Line Pairs to support the
algorithm.
Starting positions increment, ending positions decrement the array by an equal value.
By this, the array A[] reflects the appearance of Line Pairs related to the horizontal x-axis
of an image. Fig. 4.25 on the following page shows a possible situation on the array after
a coherent group of Line Pairs would have been collected.
When all Line Pairs are collected, the horizontal starting and ending of opponent cluster
have to be found on A[] as those interval pairs [i, j], who meet the following equations:

CHAPTER 4. IMAGE PROCESSING 51

S =
j

∑

k=i

A[k] = 0 ∧ A[i], A[j] 6= 0 ∧ 0 ≤ i < j < n (4.8)

To proof the existence of S in formular eqa:condition, we just need to know that if A[]
gets incremented on a position k1 by a value v, it will also be decremented by the same
value v on a later position k2 > k1.

To find all interval pairs, the values of A[] are added up beginning from 0 to n. As defined
in formular 4.8 on the previous page an interval starts if S 6= 0 and ends if S = 0 again.
Coherent positions of Line Pairs related to the x−axis can now be detected by finding
the zero points of S.
In fig. 4.26, S is displayed after calculation on A[] such as shown in fig. 4.25.
By knowing all interval pairs, A[] can be transferred to a look up table providing the
relevant segment number for a horizontal value x1 or x2 (see fig. 4.27). Now every Line
Pair can be assigned to its cluster it belongs to by looking up the relevant cluster number
in A[] as A[x1] or A[x2]. Finally the farthest point to the horizon of each cluster is
calculated, which are used to create player percepts.

Figure 4.25: Array A[] after Line Pairs were collected. The x-axis displays the scan line,
the y-axis shows the amount of startings (positive) or endings (negative) of an amount
of Line Pairs in the image. Gray squares stand for an increment/decrement, which has
taken place.

CHAPTER 4. IMAGE PROCESSING 52

Figure 4.26: the behavior of the sum-function applied on A[] beginning from A[i] to A[j].
For example: S(k) = 4.

Figure 4.27: Array A[] in its final state provides the segment number for each x-value.

In the following the algorithm is described as pseudocode:

Alternative Clustering of Line Pairs:

input: Line Pairs;

output: opponent segments;
variables: array A[];

during the scan:

1. Collect all Line Pairs (x1, x2, y) and increment/decrement A[]:

after the scan:

1. Find interval pairs [i,j] on A[];

2. Convert A[] to a look up table providing the relevant cluster number;

3. Create opponent cluster via A[];

4. Create player percetps via furthest point to horizon.

CHAPTER 4. IMAGE PROCESSING 53

Problems in the performance

Actually the cluster algorithm introduced in this chapter would work properly on a scan
parallel to the horizon, which has not been implemented yet. To realize such scan wouldn’t
be a problem, but within the lack of time at the end of this project group the development
has been stopped for now. The algorithm is though not incompatible to a scan parallel
to the image, but the bigger the angle is between the horizon and the x-axis of the image,
the less precise are the horizontal borders of a cluster. At least for the reasons above
mentioned this approach has never been tested on a robot yet.

4.4 Image Processing for the Open Challenge

In the following subsections we will give a brief description for the deployment of the image
processing for the Open Challenge. A detailed description of the Open Chanllenge you
can find in subsection 7.3.2 on page 70. We had to implement new detection algorithms for
climbing the ramp of the platform and finding the feature points of the platform, which the
robots had to bite with their mouths. As the image processing solution we used the RIP.
For the localization on the field we used a modification of the GT2003ImageProcessor
as the image processing solution. We switched between the two solutions, because we
wanted to get the best performance throughout the open challenge.

4.4.1 Climbing the ramp

In this part of the challenge, we had to face the following difficulties:

• Finding the position situated in front of the ramp

• Turning until the robot faces the ramp

• Climbing the ramp while staying in its middle

The Field specialist of the RIP intervenes during the two last phases of the process,
guiding the robot by using the red line.
This problem consists of searching a linear segment of red color, and to determine its
angle. The position of the lowest point of the line is a good indicator of the relative
position of the robot.

We also need the two following parameters:

α : the angle of the red line (in degrees)
β : the relativ position of the lowest point in the X axis (0.5 corresponds to the middle)

The robot must thus be permanently in such a position that (α, β) = (90, 0.5). If not,
the parameters (α′, β′) = (90− α, 0.5− β) are used to correct its trajectory.

4.4.2 Platform Beacon Detection

The four robots, that should move a platform that remotely resembled a Middle Size
League Robot, must firstly detect some feature points of the platform, which they can bite
with their mouths. Two rails at the side of the platform should be the objects, where the

CHAPTER 4. IMAGE PROCESSING 54

(a) (α, β) = (38, 0.7) (b) (α, β) = (73, 0.55)

Figure 4.28: The output of the red line detector

robots had to bite in. Since the mouth of an ERS-7 robot is not very large, the pipes
must be comparatively thin. Another problem was, that the mouth of the robot only
will fit to a rail, if the robot stands almost perpendicular to it. So we marked each bite
point for the robots with a colored beacon on the pipe and a vertical line centered to the
beacon behind it. An illustration of a beacon is shown in 4.29 on the following page. A
picture of the original platform we used at the Open Challenge you can find in figure 7.2
on page 71. The idea was that the robot can localize itself relative to the platform, by
analyzing the colors of the beacons, the size of the beacons, the direction to the center of
the beacon, and the distance of the vertical line to the center of the beacon. So we have
to calculate the following variables, that are defined in the field coordinate system :

• p - The position of a beacon, relative to the platform.

• d - The distance of a beacon to the robot.

• α - The angle included by the vector from the beacon center to the robot and the
perpendicular to the beacon.

• γ - The angle, where the robot detected the beacon center, relative to the angle of
his body.

Every beacon has two colored regions of the same size. Since we gave every beacon an
unique color configuration, a robot has some information about the position p of this
beacon (see 4.4.2).

left side right side position of the bite mark

orange skyblue front-left
skyblue orange rear-left
yellow skyblue front-right
skyblue yellow rear-right

Table 4.3: Color configurations of the platform beacons

Since the color configuration of the platform beacons is analogous to the color config-
uration of the landmarks on the playing field, we used a modification of the detection

CHAPTER 4. IMAGE PROCESSING 55

Figure 4.29: Illustration of a platform beacon.

algorithm explained in 4.3.4 on page 32. The modification was that we searched with
the same algorithm for landmarks, which are aligned with the horizon and have the color
configuration of the platform beacons. After a beacon has been detected, a scan above
the beacon is made, to detect the position of the vertical line behind the beacon.

We calculated the distance d of the beacons by their height. The angle γ can be calculated
directly from the position of the beacon center in the image and the camera matrix, which
represents the position and orientation of the camera. The angle α can be calculated by
analyzing the width of the beacon and the distance between the vertical line and the
beacon center in the image. We took advantage of the fact, that a robot can know the
measurements of the beacons in the real world.

After the variables p ,d, α and γ for a detected beacon have been calculated, the informa-
tion are provided in a model that considers the odometry data of the robot. All resulting
variables are provided to the XABSL-Engine as XABSL-Input-Symbols [12].

Chapter 5

Resource Scheduling

Creating a virtual robot which constitutes as a single interface to a team of soccer playing
robots was one of the main aims of the project group. In our approach every single robot
of the team represents itself as a coequal actuator to the virtual robot. Thus resource
sharing is a substantial part of this approach. As the term resources covers a wide range of
different meanings we had to examine initially which kind of resources were to be shared
and how they were to be implemented into the GT-framework. We distinguished between
three kinds or levels of resources: the robot as a whole, processed information and raw
hardware like actuators or sensors.
On the level of sharing robots as a whole we developed the dynamic team tactics (DTT).
This concept allows to define high level team-tasks without the need for caring about
allocating jobs to single robots. DTT is described in the next section.
The level of sharing processed information was already existent in the GT-framework when
we started with our project group. Since every robot has to process the same kind of data
while playing soccer, e.g. detecting the ball, broadcasting the resulting information to the
other teammates proves to be the most feasible way. The processed information of the
other robots helps to verify the information which was processed locally and is therefore
valuable at any time. On this aspect we decided to maintain the given solution of the
GT-framework.
To be able to share raw hardware we introduced a new module to the GT-framework, the
resource scheduler module. It enables a robot to share his own hardware resources and
to request remote hardware resources from other robots, e.g. buttons, walking-requests,
sound-output, etc. Even though this module was not used in our effort to create the virtual
robot we wanted to implement solutions for every level of resource sharing postulated by
us.

5.1 Dynamic Team Tactics

As aforementioned we developed the dynamic team tactics to comply with the needs of
sharing robots as a whole. The virtual robot metaphor in mind, we wanted to create a
system which enables us to express the behavior of the robot soccer team without caring
about the distribution of the different tasks to special robots. The virtual robot should
get its assignment and the distribution to his actuators schould be done automatically.
Furthermore we wanted the system to be robust against a broken or split network and to
be scaleable concerning the number of robots and the number of the available processed

56

CHAPTER 5. RESOURCE SCHEDULING 57

information. Our decision for these requirements was based mainly upon three reasons.
First, as we started with our project group fairly no one knew anything about robot
soccer and thus we had to rely on the information given to us by our supervisors and
predecessors and the information gained at the workshop in Velbert. Among this, one of
the frequently recurring topics was network communication, its importance and its not
quite sempiternal stability.
Second, we had a lot of ideas to improve the existing image processing, e.g. detecting
enemies(see 4.3.8 on page 39), for which we prepared our resource sharing system. As we
did not know if all of our ideas would be accomplished, we designed the system to adapt
smoothly to new available information.
Third, the rules (2.1 on page 6) of a robot soccer game contain penalties where the
punished robot is taken off the field for 30 seconds. As this can happen in pretty serious
situations, e.g. just before kicking a goal or while defending the own penalty area, we
wanted the system to adapt instantly by reallocating the tasks to the remaining robots
automatically.
In addition to these rather technical requirements we wanted a system which enables us
to distribute its development among a variable number of persons as we had a lot of
man-power in our project group. Further we wanted to preserve the possibility to use the
long lasting and field tested XABSL architecture as basis of our new behavior.

5.1.1 Overview on Dynamic Team Tactics

In our effort to find a viable behavior strategy that fits the above-mentioned criteria, we
developed a dynamic system that delegates its tasks, or as we decided to call it: options,
among the pool of available robots. The system delegates every option to the robot best
suited for it, it adapts to a varying number of robots and always selects a set of options
that fits the overall game situation best.
An option should be viewed as an atomic action that a robot can perform, such as walk-
ing to a specific position, kicking the ball, turning to search the ball and similar things.
Every single option is related to a XABSL file which allows us to use existing behaviour
features - which means the already existing abilities of the robots as well as the entire
XABSL architecture. This partitioning into single options provides the ability to spread
the development and especially the testing of the behavior among separated persons or
teams. As an example, one team can develop the kicking of the robot and another team
can develop pass-playing in parallel. Meanwhile a third team could work on the option
ratings (which are introduced below) for those options.
Additionally we created the possibility to group several options in an option class, a con-
tainer for similar options. Assume there is a simple kick option class, then any number of
developers can create new kicks and add them independently to this option class without
the need of changing the behavior definition. This modularity of our approach makes the
development and testing of distributed behavior more fail-safe and suitable for big teams
like the GermanTeam or even our project group itself (see 5.1.1).
During a game, all robots continuously evaluate how well they can perform every single
of those options and produce a rating between 0 (very hard to perform) to 100 (very easy
to perform). So, for example, a robot that is far away from the ball will assign a very
low value for the kickBall option, while a robot that stands next to the ball will assign a
high rating. An option rating can use any information it needs which is calculated by the
robot. If, for example, an opponent detection is developed, than it is easy to add this new
information to the option ratings and do something more sensefull than kicking (maybe

CHAPTER 5. RESOURCE SCHEDULING 58

Processed information available

tactic
chooser

option
rating

DTT-
options

option
class

single XABSL options

Figure 5.1: Overview of the DTT- Structure

pushing) when you are in front of an opponent. Thus the integration of new processed
information is separated of the single behavior options which continues reducing sources
of error and gives more flexibility when developing multiple behavior strategies in parallel.
All these ratings will be broadcasted so that all robots have all other robot’s information
as well. This data isn’t synchronized but will be ranked down via an aging algorithm over
time, as it gets outdated. We decided to use broadcasting to comply with our aforesaid
requirements. If, for example, a network split occurs, the robots will build up separated
teams according to the network breakdown and these separated teams will perform the
tasks which they can do best and which are most wanted by the behavior definition.
As an additional layer of control, we have added global analysers, that provide the be-
havior engine with a more general level of information, including information about the
game score, offensive or defensive game situations and other global kinds of information.
The actual behavior of the robots will be determined in so-called Tactic Entries (see 5.1).
Each of these entries consists of up to n options or option classes, one for every possible
robot in the team. Imagine a single tactic entry as a representation of a certain game
situation. Each option in a tactic entry can be weighted. This weight represents the
importance of this option in such a certain game situation. For example the tactic entry
could describe a game situation in front of the opponent goal. There would be certainly
an option for kicking the ball, maybe an option for walking to a supporting position, an
option for walking to a defending position and an option for staying inside the own goal
(goalie option). The kick-ball option in this situation should get a higher weight than
the go-to-supporting-position option which itself should get a higher weight than the go-
to-defend-position option. The weights provide an order among the options of a tactic
entry and define thereby how the options are distributed among the robots if the number
of robots is less than the number of options in a tactic entry, e.g. through a penalized
robot. Besides the weights for each option in a tactic entry, each of the options can be

CHAPTER 5. RESOURCE SCHEDULING 59

NR. DTT option weight allowed robots
0
1
2
...
n

tactic entry weight
global analyzer type

...

Table 5.1: Structure of a tactic entry

restricted for some robots. This feature was introduced as the rules 2.1 on page 6 demand
a dedicated robot to be the goalie. Thus the other robots of the team should be never
advised to execute the goalie option.
As the single options in a tactic entry, the tactic entry itself has a weight which represents
its importance among the set of tactic entries building the behavior definition. Though
these weights are actually fixed values during a game, we envisioned these weights to be
actively modified during a game through a learning algorithm which rewards successful
tactic entries and punishes the unsuccessful ones.
Additionally each tactic entry has a property list. These properties characterize the tactic
entry towards the global analyzers through a set of types provided by each global analyzer.
For example the Offensive/Defensive Analyzer provides the types offensive, neutral and
defensive. Each tactic entry is characterized by one of these three types. During runtime
each global analyzer generates a weight for each type which is applied to the tactic entries
accordingly. Thus the global analyzers provide a convenient way to create complex and
fuzzy sets of tactic entries which are selected by global game situation.
To decide which option should be executed, each robot calculates all possible robot/tac-
tic entry combinations and determines a score for each permutation by multiplying the
option ratings of the options in the tactic entry with their weights and sum these results.
The sum is then multiplied subsequently with the tactic entry weight and the weights
generated by the global analyzers. For a team of four robots 24 scores are generated for
each tactic entry. Up to 100 tactic entries are a reasonable amount for playing robot
soccer so that an overall amount of 2400 scores are calculated. As long as all robots have
reasonably synchronous ratings, all robots should calculate the same tactic entry with
maximum score, choose their assigned option in this entry and perform it. The tactic
entries span a decision space which is very smooth and well formed. Even if the option
ratings get a little bit asynchronous, the selected tactic entries resemble one another. Even
with a total network breakdown each robot will choose the option which it can perform
best. This robustness is one of the outstanding qualities of DTT.
To give an idea of how this rating works, we will give a short (and simplified) example.
Table 5.2 shows the option-rating of two robots for the three options KickToGoal, Go-
ToOwnGoal and GoToCenter.
Table 5.3 shows two tactic entries for two robots including all the weights needed to cal-
culate the final scoring.
Table 5.4 shows the calculation of the scores for all Tactic Entries and all robot-permutations.
The system will decide to let robot1 kick the ball to the goal and let robot2 go to the own
goal, as entry1 for the permutation [robot1, robot2] has the highest score.

CHAPTER 5. RESOURCE SCHEDULING 60

KickToGoal GoToOwnGoal GoToCenter
robot1 60 0 75
robot2 0 100 20

Table 5.2: Example for an Ootion-rating of two robots for three options (robot2 is the
Goalie, therefore it is only allowed to go into goalie position)

entry1 KickToGoal[10] GoToOwnGoal[5] global weight: 2
entry2 GoToCenter[8] GoToOwnGoal[5] global weight: 1

Table 5.3: Example for two tactic entries. The corresponding weights are given in brackets

5.1.2 Files, Folders and Implementation

In this part an overview of the used files will be provided as well as a brief description of
their function.

Tools/DynamicTeamTactic

The folder Tools/DynamicTeamTactics includes all auxiliary and base classes.

• RateableOptions.h/.cpp
The header file defines the auxiliary RateableOptions class. It includes numerous
enums and tool methods that provide information on Options, OptionClasses as
well as OptionRating-, TacticChoser- and GlobalAnalyser-Engines.

• CollectedBeliefs.h/.cpp
These files define the SingleBeliefs and CollectedBeliefs classes. SingleBeliefs is a
container for a single robot´s option ratings. CollectedBeliefs embraces all robots´
ratings. Its update() method transfers these ratings from the TeamMessageCollec-
tion to the SingelBelief array. The broadcast() method transfers the own ratings
into the TeamMessageCollection.

• TacticEntry.h/.cpp
These files define the TacticEntry and TacticEntryArray classes. TacticEntry in-
cludes a single tactic entry, TacticEntryArray contains a number of tactic entries.

• OptionRating.h
Defines the OptionRating class. Inheriting from BehaviorControlInterfaces, it is the
base class for all option rating engines. BehaviorControlInterfaces allows access to
all system data, the reference to CollectedBeliefs provides a way to store ratings
from the OptionRating-Engine. Also it has a virtual void rateOptions() method,
that all child classes must implement.

• TacticChooser.h
Defines the TacticChooser class. Inheriting from BehaviorControlInterfaces, it is the
base class for all tactic choser engines. It includes a reference to CollectedBeliefs as
well. It has a virtual RateableOptions::optionsID chooseOption() method, that all
child classes must implement.

• GlobalAnalyser.h
Defines the GlobalAnalyser class. Inheriting from BehaviorControlInterfaces, it is

CHAPTER 5. RESOURCE SCHEDULING 61

permutations [robot1, robot2] [robot2, robot1]

entry1
60 ∗ 10 + 100 ∗ 5 = 1100

1100 ∗ 2 = 2200
0 ∗ 10 + 0 ∗ 5 = 0

0 ∗ 2 = 0

entry2
75 ∗ 8 + 100 ∗ 5 = 1100

1100 ∗ 1 = 1100
20 ∗ 8 + 0 ∗ 5 = 160

160 ∗ 1 = 160

Table 5.4: The calculation of the scores corresponding to the data given in 5.2 and 5.3

the base class for all global analyser engines. Its virtual void update() and virtual
double getWeight(RateableOptions::TacticEntryTypeID tacticEntryType)methods must
be implemented by all child classes.

Modules/BehaviorControl/GT2004BehaviorControl/GT2004DTT

• DefaultOptionRating.h/.cpp
DefaultOptionRating implements our current version of the option ratings.

• DefaultTacticChooser.h/.cpp
In this file we implemented a tactic chooser for the DTT system.

• OffDefAnalyser.h/.cpp
This file provides the offensive/defensive global analyzer currently used.

• GoalieCoach.h/.cpp
This file provides the goalie coach global analyzer currently used.

5.1.3 Working with DTT

After we developed this basic behavior-engine, we started to implement it within the
GermanTeam framework. Since there are only 4 robots in one team, we decided to brute-
force all 24 possible robot-option combinations instead of developing more sophisticated
algorithms that might have polynomial calculation time in the number of teammembers.
Therefore the engine was quite easy to implement.
As above-mentioned, DTT allowed us to spread the behavior work over different sub-
groups of our project group where these subgroups were able to develop their tasks quite
independently from each other.

Figure 5.2 shows the GT2004 RobotControl dialog called tactic designer that is provided
by the DTT-engine to edit and add new tactic-entries. This tactic entries are saved into
a file named default.dtt and copied to the stick1. The tactic designer displays the set
of tactic entries in a tree structure which can be edited directly with a click-wait-click
scheme or by selecting an appropriate value in a list box placed above the tree view. The
list box changes its content interactively depending on the type of the selected item in
the tree view.
Since it’s quite hard to directly observe the reason for a misbehavior during a running
game on the playing field, we implemented a real-time option-rating viewer (see figure 5.3)
in the framework. It displays the current ratings for all options and the tactic-entry every
robot has chosen. By using these tools, we were able to start the work on the tactical
behavior of our robot soccer team. After a few attempts, we found out that the global

1stick : short for Sony Memory Stick - a removable memory storage chip used by the Aibo robots

CHAPTER 5. RESOURCE SCHEDULING 62

Figure 5.2: A screen shot of the tactic-entry editing window. The entries currently loaded
define the behavior for the open challenge (see 7.3.2 on page 70).

CHAPTER 5. RESOURCE SCHEDULING 63

Figure 5.3: This window shows all the current option-ratings of the four robots in real-
time. The visible options are those needed for the open challenge (see 7.3.2 on page 70).

CHAPTER 5. RESOURCE SCHEDULING 64

analyzers are a very useful and strong tool to organize subsets of tactic entries. The
first global analyzer we implemented was the offense/defense analyzer, which made it a
lot easier to create an offensive and a defensive focus in the strategy. In fact, it’s quite
simple to decide if the team is in the offense or the defense just by having a look at the
ball-position. If the ball is in the own half, the team has to play defensively, offensively
otherwise.

Based on this engine, we set up a game against the GermanTeam code from Padova. In
that game DTT was resonable for the positioning of the robots and the old behavior for
the other actions. Both teams were ERS-210 and had the same color table, so the only
difference was the behavior. We had several testing games with this setup and the DTT
based team won 4 out of 5 games. After these encouraging results, we decided to migrate
more of the old behavior solutions to DTT. To do so, we had to focus especially on the
option ratings, because they are the core part of the entire system.

5.1.4 The inner workings of option ratings

An option rating is basically a relation, that is assigning numbers between 0 and 100 to
different options based on the current sensor data and the decisions the team has made
before. The GoToBall rating is a good example describing how an easy option rating
works.
Our first approach for the GoToBall rating was a simple, linear formula:

max(0,min(100,−0.1 ∗ d+ 100))

The min/max part of the formula simply ensures that all ratings are within the range
of 0 to 100, the real rating is done by 0.1*d+100, where d is the distance of the ball to
the robot in millimeters. If the distance is 0, the rating is 100. The rating will fall down
linearly with d and reach its minimum (0) at a distance of 1000 mm as can be seen in
figure 5.4.

On the one hand, these linear ratings are very easy to calculate, but on the other hand,
they are quite hard to handle in situations that allow different tactics. In those cases,
linear ratings suffer from the noisy input data of a robot and can lead to change the
chosen tactic every other frame which means a behavior that is based on linear option
ratings is not stable.
The first tuning approach to the linear option ratings was to use multiple input variables
instead of only one. In the example of the GoToBall rating, we added the angle to the
ball to the rating (if a robot looks straight to the ball, it has a better GoToBall rating
than a robot that has to rotate to be able to approach the ball). These changes lead to a
better behavior when the ball was positioned right between two robots. Another change
we intended to incorporate was to take the positions of the opponents into account. Un-
fortunately this was not possible, because the behavior module was never supplied with
information about the opponent´s positions (see 4.3.8 on page 39 for details).

Because polynomial functions are not easy to tune, we used quadratic or cubic ratings

CHAPTER 5. RESOURCE SCHEDULING 65

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000 1100

distance (in mm)

ra
ti

n
g

Figure 5.4: Example of a very simple, linear option rating for GoToBall

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000 1100

distance (in mm)

ra
ti

n
g

Figure 5.5: The ’theoretical optimal’ option rating for GoToBall

only very seldom. Instead we combined different linear ratings into one. This led to a
linear approximation of the desired rating in different value-segments. The figures 5.5
and 5.6 show this technique in greater detail.

Apart from these continuous ratings, we used even simpler ones (i.e: when ball in range
from 0 to 50 mm: rate to 100, for greater distances: rate to 0). These were very useful for
the reflexing goalie we implemented based on DTT, because the reflexing is only triggered
if the following four conditions are fulfilled:

1. ball is closer than a specified distance

2. ball´s speed exceeds specified threshold

3. ball´s moving direction is inside specified angle range

4. time since last own reflex movement above a specified threshold

CHAPTER 5. RESOURCE SCHEDULING 66

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000 1100

distance (in mm)

ra
ti

n
g

Figure 5.6: A linear approximation of the rating shown in 5.5.

5.2 Scheduler Module Integration

The development and implementation of the resource scheduler module completes the
integration of our resource sharing task into the GT-framework. With this module it is
possible to share the hardware of a robot on a very low level.
We made the experience that this feature is not constantly used while playing soccer. Since
every robot on the soccerfield faces the same problems, e.g. detecting the ball, the load
on every single robot is typically similar. Thus information that may be useful and could
be extracted from the sensor data of another robot is normally calculated by this latter
robot anyway. Directly sharing hardware of a robot on such a low level is more suitable
for debugging purposes. In that case it is possible to use button and sensor input, LEDs
and sound output of a robot to remote control and monitor another robot. As this case
is still not so frequent, we decided to implement this kind of resource sharing in a request
and grant fashion. For that reason the teammessage structure was expanded to notify the
other robots about the resources a single robot wants to share, to request a resource of an-
other robot and to send a return value to the requesting robot. To notify the other robots
about the resources a robot is willing to share, the outgoingSharedResourcesTeamMessage
was added to the TeamMessageCollection. For requesting a shared resource the outgo-
ingRequestResourceTeamMessage array was added to the TeamMessageCollection. For
each teammate the array provides an entry. To return requested data and sending ac-
knoledgements to the requesting robots the outgoingReturnResourceTeamMessage array
was added to the TeamMessage-collection. Like the outgoingRequestResourceTeamMes-
sage the array provides an entry for each teammate. As an example assume the following
situation: robot A wants to share its sensor information stored in the sensor data buffer.
To do that, it just sets the isShared[rtSensorDataBuffer] member of the outgoingShare-
dResourcesTeamMessage to true. This message is automatically transferred to all other
robots. One of these robots, e.g. robot B, wants to request the sensor data from robot
A. Having just received the SharedResourcesTeamMessage from robot A it knows that
robot A is willing to share the resource it wants to request. By setting the type member
of the outgoingRequestResourceTeamMessage[A] to rtSensorDataBuffer, robot B request
this sensor data buffer resource from robot A. Once this Message is received by robot A,

CHAPTER 5. RESOURCE SCHEDULING 67

Figure 5.7: state machine of senso slave

robot A sends its current sensor data buffer back to robot B via the outgoingReturnRe-
sourceTeamMessage[B].
As we thought about using the resource scheduler module mainly for providing debug
assistance, our solution for the scheduler module uses the first come, first served ap-
proach. Due to the modular concept of the GT-framework it is possible to implement
other scheduling strategies if required in a plain way as new solutions for this module.

5.2.1 Senso - a sample application

To demonstrate the mode of operation of the resource scheduler module we implemented
a distributed version of the game senso2.
Senso works as follows: the computer plays a sequence of light and sound signals and
the human player has to repeat this sequence by pressing the appropriate buttons. By
increasing the number of light and sound signals in the sequence each level, the degree of
difficulty increases continually.
In our implementation of senso, one robot uses the LEDs, buttons and the sound-output
of a variable number3 of other robots to play the sequence of light and sound signals and
to get information about the correct repetition of this sequence. The state machine of
the slave robots is expectedly simple (see figure 5.7). At the pushing of the headbutton
the robot switches into a state where it shares its LED, sound and button resources. As
aforementioned the main robot recognizes the shared resources of the other robots and
generates a corresponding light and sound sequence. Afterwards this sequence is played
on the other robots and the main robot waits for the correct input of the player. If the
player fails, the game stops and a new game can be started by pressing the back button
of the main robot. If the player succeeds, the sequence of the next level is generated and
played. At the beginning of each level the main robot checks for new robots willing to
share their resources and robots which deny sharing their resources respectively. Thus
the number of robots which participate in the game can alter from level to level completly
seamlessy.

2Also known as Simon Says.
3Currently up to three other robots are supported.

CHAPTER 5. RESOURCE SCHEDULING 68

5.2.2 Conclusion

The senso example makes, unlike debugging, heavy use of the resource scheduler module.
Under these conditions we encountered additional need of network bandwidth caused by
the request and grant scheme of the resource scheduler module even though the used
scheme is quite simple structured. In contrast to one packet each 500ms used by the
aforementioned dynamic team tactics we had to increase the sending rate to one packet
each 75ms to establish a fluid game. As the actual GT-framework limits the communica-
tion speed to one packet per frame of the cognition process (which runs typically between
20 to 25 fps), especially sending pictures comes along with big delays. In this regard we
evaluated the operating expense of modifying the GT-framework to minimize those delays
and came to the result, that it would be a disproportional effort needed to do so.
We assess this as a further indicator that resource scheduling on such a low level is not
as suitable for a complex task like playing soccer as approaches like dynamic team tactics
which are situated on a significantly higher level.

Chapter 6

Ceiling Camera

One of the tasks of our project group was to develop a model for automatic situation
analysis. As described in the previous chapters, many different methods, like opponent
detection, Dynamic Team Tactics, automatic learning of new kicks etc. were tried and
implemented on the robot. But all these methods suffer from one common problem: noisy
and imprecise robot hardware. While there can’t be anything done against this problem
in the actual game, a higher precision localization, ball detection and enemy recognition
is a crucial feature for most automated learning tasks.

One example is the current method of automated kick learning. The robot has to localize
itself on the field, find the ball, kick it, and try to estimate the ball’s new position after
the kick. If done on the robot hardware alone, all these measurements are noisy, and have
accuracies that are in the 10s of centimeters range. Also localizing and finding the ball
takes a lot of time, and repeated kicking stresses the robot hardware.

Other problems were due to the introduction of the new ERS-7 model. The self-locator
was originally developed and tuned for the ERS-210, and performed badly on the new
robot model. While the original authors had used a laser scanner mounted at the side of
the field to gain ground truth about the robots’ position [5], we had no such technologies
at our hand. Without ground truth, tuning the self locator turned into a matter of
guesswork and drawing conclusions from the robots’ behavior.

To ease the situation, a plan for implementing a ceiling mounted camera was devised. The
camera should be able to capture the complete playing field, and enable us to directly
measure positions, distances and velocities on the field.

The development plan consisted of two parts:

• Implement a realtime, interactive ceiling camera view, that can be shown in the
RobotControl field view. To directly evaluate the robot’s performance it should be
possible to overlay the robots’ debug drawings, to see both ground truth and debug
data in direct correspondence.

• Implement a ceiling camera oracle that can automatically recognize and measure
the robots’ and ball’s position on the playing field. A network server should be
developed, so that the oracle has to run on only one computer in the arena. This
oracle could also be used for various other tasks like automatic evolution of new
behavior, testing the obstacle and opponent detection code and learning of new
kicks.

69

CHAPTER 6. CEILING CAMERA 70

The two part plan seemed to be the best way to implement the desired tools, because
it divides the task into smaller, not-too-difficult development steps. As we will see, the
second step is directly based on the first one, and can strongly benefit from code reuse.

Using a camera for precise measurement of distances isn’t as easy as one might think
at first. Camera pictures mainly suffer from two problems: lens distortion (because
lenses aren’t perfect) and perspective distortion (because the camera sometimes can’t be
mounted exactly above the middle of the field). The two are also known as the intrinsic
and extrinsic parameters of a camera setup.

6.1 Lens distortion correction

After evaluating different camera models, it became clear that a wide-angle lens is needed
for the given size of the playing field and the limited mounting height. By using a
wide-angle lens, it is possible to capture the entire playing field with only one camera
mounted above the center of the field. As a downside, wide-angle lenses often exhibit
pronounced lens distortion (also known as fish-eye effect), that has to be corrected before
the picture can be used for measurements. An example of this fish-eye effect can be seen
in Figure 6.1(a) on the following page.

The topic of distortion correction for camera lenses has been widely researched since the
early 1950s because of its importance for aerial photometry. Clarke and Fryer [7] give a
good overview of the history and theory of distortion correction. In the last years, many
methods were developed for automatic and semi-automatic estimation of lens parameters;
after evaluating some of the methods, we chose the lens distortion model presented on
J. Bouguet’s website [1] (which is based on a popular paper on lens distortion correction
written by D.C. Brown [3]).

The reasons were mainly ease of use – there’s a complete calibration toolkit for MATLAB
written by the authors of the website, and the calibration can be done semi-automatically
by taking shots of a checkerboard pattern (see Figure 6.1(a) on the next page) under
different angles. According to the authors, subpixel accurate distortion correction is
achievable without problems.

The intrinsic distortion model used by our software has the following parameters:

• Focal length: The focal length in pixels stored in (fx, fy)

• Principal point: The principal point coordinates (cx, cy)

• Skew coefficient: Angle between x and y axis, α

• Distortions: Radial and tangential coefficients, (k1, . . . , k5)

Let (x, y) be the coordinates of a pixel in the original camera image. Let

x′ =
x− cx

fx

y′ =
y − cy

fy

r =
√

x′2 + y′2 (6.1)

CHAPTER 6. CEILING CAMERA 71

(a) Calibration object - note that the checkerboard’s
edge appears bent though it is perfectly straight in
reality

(b) Intrinsic parameters estimated by the MATLAB
toolkit. The small arrows show the pixel displace-
ments due to the lens distortion.

Figure 6.1: Lens distortion correction

Then x′, y′ are the normalized image coordinates. We can now write down the distortion
model as a set of three correction terms:

• Radial distortion

∆rx = (k1r
2 + k2r

4 + k5r
6)x′

∆ry = (k1r
2 + k2r

4 + k5r
6)y′ (6.2)

k1, k2, k5 are also known as the 2nd, 4th and 6th order radial distortion coefficients.
(∆rx,∆ry) is the offset from the optimal pixel for a given distance from the center
of projection.

• Tangential distortion

∆tx = 2k3x
′y′ + k4(r

2 + 2x′
2
)

∆ty = 2k4x
′y′ + k3(r

2 + 2y′
2
) (6.3)

k3, k4 are known as the tangential distortion coefficients. The tangential distortion
is due to ”decentering”, or imperfect centering of the lens components and other
manufacturing defects in a compound lens.

CHAPTER 6. CEILING CAMERA 72

• Affine distortion

undistx = fx(x
′ +∆rx +∆tx + α(y′ +∆ry +∆ty)) + cx

undisty = fy(y
′ +∆ry +∆ty) + cy (6.4)

α is known as the skew coefficient, and can account for non-rectangular pixel sensors.

(undistx, undisty) is finally the undistorted image coordinate of the original point (x, y).

All these parameters can be estimated semi-automatically by using the MATLAB toolkit
provided by the website authors. Normally, 10 to 15 shots of a reference checkerboard
pattern are enough to give a good estimate for most of the parameters. Figure 6.1(b)
on the preceding page shows the result of a run for one of our wide-angle cameras. The
arrows in the top of the figure show the displacement of the pixels. A pixel that should
lie at the start of an arrow under optimal conditions is distorted to the end of it by the
lens. The small circle in the center depicts the estimated center of projection vs. the ideal
center depicted as a small cross. All estimated parameters (complete with error bounds)
can be seen in the bottom half of the figure.

6.1.1 Reduced distortion models

As stated on Bouguet’s website, a reduced model is often sufficient for modern CMOS
and CCD cameras According to it, modern lenses do not exhibit noticeable tangential
distortion, and are usually using a rectangular pixel sensor which makes skew correction
unnecessary. (In fact, a second radial order only model can often give a fair approximation
for small cameras).

After doing some tests with reduced distortions models, it became clear that there are
almost no performance gains when using a reduced model on modern computers – and as
we’ll see later on, the model only needs to be evaluated once in a preprocessing step. So
we opted for implementing the full distortion model supported by the MATLAB toolkit
anyway.

6.2 Perspective correction

Ideally, the camera would be mounted directly above the middle of the field, and in a
height that uses the whole image area to capture the playing field. Unfortunately, this
often can’t be done in practice. It’s complicated enough to exactly align the camera in the
lab, but under competition conditions it’s next to impossible. Competitions are usually
quite busy, the field will be moved or may still be under construction, and often there is
no possibility to mount the camera above the field. As a compromise, a camera stand at
the side of the field is often the only viable option for getting pictures from the field.

Taking pictures from non-optimal positions will always introduce perspective warping and
foreshortening. While perspective texture mapping is widely used in computer graphics,
we need to invert the process, and basically undo the mapping that is introduced by the
camera’s position.

Heckbert [11] gives a nice introduction into the different types of texture mappings. We
will use a 2-D projective mapping to model the perspective distortions of our ceiling
camera.

CHAPTER 6. CEILING CAMERA 73

Projective mappings can be written as rational linear mappings:

x =
au+ bv + c

gu+ hv + i
, y =

du+ ev + f

gu+ hv + i
(6.5)

where (u, v) is a source pixel in camera image coordinates, and (x, y) receives the undis-
torted pixel coordinates.

Or more easily in 2 dimensional homogenous matrix notation:

(x′, y′, w) = (u′, v′, q)

a d g
b e h
c f i

 (6.6)

where (x, y) = (x′/w, y′/w) for w 6= 0, and (u, v) = (u′/q, v′/q) for q 6= 0. (See [10] for a
complete discussion of homogenous coordinates).

As can be seen in Equation 6.6, a perspective texture mapping has 9 degrees of freedom
(a . . . i). Because any linear multiple 6= 0 of a homogenous point maps to the same point
in normal coordinates, we can reduce the equation to 8 degrees of freedom by assuming
i = 1 without loss of generality.

In our application, we choose to implement an interactive texture mapper. The user can
define a source and destination quadrilateral, to align the image of the playing field to
the desired coordinates. The two quadrilaterals consist of four coordinates each, which
yields 8 user-set parameters in total.

To infer the 8 parameters of a projective mapping from these coordinates, a 8x8 system of
equations can be set up and solved by gaussian elemination or similar methods. However,
because we wanted to avoid the subtle complexity of implementing an equation solver, we
opted for an easier composition based method as introduced in Heckbert’s paper.

u

v

0

0

1

1

case 2 case 1

case 3

Figure 6.2: Texture mapping as a composition of simpler mappings

Projective mappings define a bijective mapping between two coordinate spaces. Even
more remarkable is the fact that the inverse of a projective mapping, is a projective
mapping. The inverse transform can simply be calculated by taking the inverse of the
homogenous matrix.

Because of this, every projective mapping between two arbitrary quadrilaterals can be
decomposed into a mapping from the source quadrilateral to a unit square, and then from
a unit square to the destination quadrilateral (see Figure 6.2).

Fortunately the parameters for the first case (unit square to quadrilateral) can be directly
calculated by algebraic methods without any explicit equation system solving. The second

CHAPTER 6. CEILING CAMERA 74

case (quadrilateral to unit square) can be solved in exactly the same way, but with an
additional matrix inversion at the end of the calculation. The final composite third case
(quadrilateral to quadrilateral) is then calculated by a matrix multiplication of the first
two cases.

(a) Original image (b) Corrected image

Figure 6.3: Ceiling camera image of the playing field

6.3 Implementation

After all the equations and complexity of lens distortion and perspective correction, the
most important question was, if all this can be implemented efficiently enough for re-
altime processing. Calculating a complete lens- and perspective corrected image takes
approximately 100ms for a 640x480 image on a 3 GHz Pentium IV. While this seems to
be quite fast, it isn’t fast enough to keep up with the framerate of modern cameras.

Luckily, the displacement map doesn’t change after the intrinsic and extrinsic parameters
are set and can thus be calculated in a preprocessing step. The ceiling camera view can
then use this map to do the actual warp (which is much faster than re-evaluating the
formulas for each pixel).

6.4 User interface

One of the main goals was an easy to use interface. Working with the ceiling camera
should be easy and fun, because it will be one of the building blocks for the work of the
following project group. As mentioned in the previous sections, we chose an interactive
warping approach1.

The ceiling camera view is fully integrated into the RobotControl application. All relevant
settings can be done in the Ceiling camera settings dialog, which can be found in the View
menu (see Figure 6.4).

The context menu of the playing field view has been extended with a ceiling camera entry.
Enabling this item will show the undistorted camera image superimposed on the playing
field.

1 Heckbert already suggested such an interactive application in his original paper, but the computing
power was too limited to actually implement this on consumer hardware in 1989.

CHAPTER 6. CEILING CAMERA 75

Figure 6.4: Integration of the ceiling camera user interface in RobotControl

The left side of the screenshot shows the actual camera settings dialog. The user can
select a camera connected to the computer, and can adjust its settings (like brightness
or frame rate) and image format by using the corresponding buttons. After a camera
has been selected, the user can enter the intrinsic distortion parameters by using the edit
boxes or, more conveniently, by importing a parameter file generated by the MATLAB
toolkit.

After the intrinsic parameters have been set, a click on Show marquee will enable the
perspective warp edit marquee (the red quadrilateral with the four orange handles as
shown in Figure 6.4). The parameters of the perspective warp are completely controlled
by interacting with the marquee. The four orange handles are called reference points.

Typically the user will first move the reference points to some easily identifiable features
in the camera image. This can be done by dragging the reference points while holding
down one of the shift keys on the keyboard. The playing field corners, or the goal posts
are some good points to select.
In the second step, the user will drag the reference points to the corresponding points
of the debug drawing. This can be done by simply dragging around the reference points
without holding down any modifier keys.

These two steps can be iterated until the camera image and the debug drawing match up
against each other as shown in Figure 6.4.

Unfortunately it’s possible to get stuck in a dead end, when some of the reference points
are moved very close to each other, or form a degenerate quadrilateral (like a point, line
or triangle). The reset button in the ceiling camera settings dialog will help in these cases,
by resetting the marquee to a default mapping.

6.5 Towards an automated oracle

As laid out in the first section of this chapter, the ceiling camera overlay is only the first
step in leveraging the ceiling camera for the RoboCup. The second step is the development
of an automated oracle, that can detect the robots’ position and orientation in the camera

CHAPTER 6. CEILING CAMERA 76

image, and provide this information to the actual robots on the field. Because writing the
camera overlay did take far more time than expected, this work is left for the following
project group.

We think that it would be best to develop a stand-alone application that can run on
one of the servers of our arena, and provide the oracle data over a client/server protocol.
Some parts of this task are already finished – an early stand-alone prototype of the ceiling
camera overlay was developed by using the Intel IPL[14], and some functions taken from
the OpenCV library [15]. The next project group should be able to back-port some of the
functions from the integrated RobotControl version to this stand-alone program without
much effort (the intrinsics dialog, MATLAB import functionality and perspective marquee
should be easily reusable).

When we worked with the ceiling camera overlay, it became clear, that the quality of
normal consumer grade webcams like our Philips QuickCam Pro (already one of the best
models on the market) might not be sufficient for automated image processing. The robots
often appear as a greyish blob, without any easily detectable features. The poor quality
of cheap wide-angle lenses combined with the small image sensor size of the camera and
video compression needed for slow USB 1.1 connections contribute to the bad quality.

The next project group should evaluate industrial quality image processing cameras, that
are readily available with 1/

2
” image sensors, USB 2.0, and resolutions in excess of

1280x1024 pixels at 50 frames per second. Some care must be taken when choosing a
wide-angle lens, because at the time of this report some rule changes concerning enlarging
the field where in active discussion.

Chapter 7

Competitions

7.1 German Open 2004

The GermanOpen1 is an international competition of Robot Soccer. This year it has
taken place in the Heinz-Nixdorf-Museum in Paderborn from 01.April 2004 - 04.April
2004. Many teams took part in the following leagues:

• Middle Size League

• Small Size League

• SONY-Legged League

• Rescue Simulation League

• Soccer Simulation League

• Junior League

In addition to the Microsoft Hellhounds, 7 other teams competed in the Sony-Legged
League. Some of them with the new ERS-7, some teams with the old ERS-210 and some
teams even had both types of robots in their team. It can be suggested that the new
robots are head and shoulders above the old ones, which is true both physically and
metaphorically, but in table 7.1 on the following page it can be shown that local solutions
can be more important than expected at first sight: the Hamburg Dog Bots used the old
ERS-210, but their performance was better than expected, since they played with the
GT2003 code from the last year, which was only slightly modified.

The dynamic team tactics (see 5.1 on page 49) were used for the first time at a competition.
One of the most apparent and noticeable features of the dynamic team tactics at the
German Open 2004 was the behavior around the ball.
The situation of two or more robots from the same team fighting for the ball would
seldom occur, instead of that teammates walked to opposite areas of the field, intending
to receive a pass. During the games though it turned out that the dynamic team tactics
have not been tuned enough. The main problem was the decision time the robots needed
to determine which robot was to move to the ball. Although the robots saw the ball

1GermanOpen official Site: http://www.ais.fraunhofer.de/GO/2004/

77

CHAPTER 7. COMPETITIONS 78

and calculated so called ball percepts, which was indicated by their shaking tails, several
seconds were wasted sometimes.

However, in the preliminary round the Microsoft Hellhounds had to play against the later
champion and the later third placed team, nevertheless they could achieve a great 4th place
overall. A close defeat in the semi-finals (3:4 against the later 2nd placed Darmstadt

Dribbling Dackels2) stopped the run to the final.

Competition-results:

Games Team 1 Score Team 2
Round Robin Microsoft Hellhounds 4 : 0 Les Trois Mousquetaieres

Round Robin Microsoft Hellhounds 0 : 6 Hamburg Dog Bots
Round Robin Microsoft Hellhounds 1 : 2 Aibo Team Humboldt
Quarter Finals Microsoft Hellhounds 4 : 3 Bremen Byters

Semi Finals Microsoft Hellhounds 3 : 4 Darmstadt Dribbling Dackels
Game for 3rd Place Microsoft Hellhounds 0 : 6 Hamburg Dog Bots

Table 7.1: The results of the Team Microsoft Hellhounds at the GermanOpen 2004.
Winning team is highlighted.

7.2 Opens 2004

Beside the GermanOpen in early April, the Microsoft Hellhounds participated in three
further national opens. The AustralianOpen on April 16th, the USOpen from April 24th
to 27th and the JapanOpen from May 1st to 4th. As representative and field operator we
sent André Osterhues to the Australian and to the JapanOpen. Walter Nistico, Arthur
Cesarz and Bernd Schmidt went to the AmericanOpen.
During these events a team of several people stayed awake in the nights and supported
the people at the championships via the internet. We earned much experience from this
and we were able to improve our code as a result of the competition with the international
teams. Without this experience we would have had much more problems during the world
championship RoboCup 2004.
At the AustralianOpen we achieved the third place in the competition, at the Ameri-
canOpen we achieved the fourth place and at the JapanOpen we achieved a second place
in the technical challenge.

7.3 RoboCup 2004

“By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win a soccer game, observing the official rules of the FIFA, against
the winner of the most recent World Cup.”

This is the topmost milestone of the international research and education initiative RoboCup.
Its main objective is to provide a standard problem where a wide range of technologies can

2member of the GT2004 Team

CHAPTER 7. COMPETITIONS 79

be examined and integrated. Playing soccer is a new benchmark for artificial intelligence
and robotic engineering and replaces the chess benchmark of the last decades.
Furthermore the annual world championships provide an opportunity to meet with sci-
entists and robotic engineers from around the world to compare and share the newest
developments in robotic science. In addition to this RoboCup tries to inspire and entice
children on the topic of robotics and computer science with RoboCup Junior.
This year the championships took place in Lisbon, Portugal. With 346 teams from 37
countries and a total of 1600 participants a new record number in the history of RoboCup
was achieved. We participated in the Sony 4-legged Robot League as part of the German-
Team which is constituted of members from the universities of Berlin, Bremen, Darmstadt
and Dortmund.

7.3.1 WE ARE THE CHAMPIONS!!

Twenty-four teams were registered for the RoboCup 2004 Tournament of the Four-Legged-
League. The organisation divided them into four groups with six teams each. Group A
consisted of only five teams because team “Wright Eagles” did not take part and all
matches against this team had been canceled. Five games had to be played in the round
robin for each team. After these games the two best teams of each group had to participate
in the play-offs.

Before the first game the GermanTeam discovered several problems of the team play and
the team behavior. A team meeting was held to analyze and solve the problems. The
team members were splitted into groups to work on solutions. The GermanTeam focused
on the image processing, the kickengine, the team behavior and the goalkeeper behavior.
All problems had been solved during the Round Robin.

• Vision and Imageprocessing: The imageprocessing indicated problems in the
ball recognition. The ball was well recognized in the distance, but close to the robot
it showed problems when the ball disappeared from sight. The localization also
showed weaknesses, but with an improved color table these problems were solved
eventually.

• Kickengine: The game against rUNSWift revealed several situations where the
GermanTeam robots could make a good kick. However, the kick engine did not
activate a kick, although an appropriate entry was registered for most of these
occasions. Again training sessions had to be made to solve this problem. Thereby it
was shown how important a realistic environment was for these tests. For example it
was important to use the maximum walking speed for approaching the ball before the
kick. Special kicks for specific situations in the game were missing. Additional kicks
had to be created for these situations and trained and registered for the kickengine.

• Team behavior: The positioning of the robots left space for improvements. In
some situations of the game the robots did not get a chance to score because of
wrong positioning, especially when the opponent was outnumbered in his own half.
The transitions between the defensive and the offensive behavior were not efficient
enough, and in some situations the worse positioned robot tried to get to the ball
instead of the better positioned one. This mainly occured, when robot A was closer
to the ball than robot B, but was obstructed by an opponent robot. The optimal
choice would have been, that robot B tried to get to the ball. Instead, robot A

CHAPTER 7. COMPETITIONS 80

kept wrestling with the opponent’s robot, while B idly waited in a pass receiving
position.

• Goalkeeper behavior: The goalkeeper had difficulties with its localization. This
problem occurred because initially the GT2003 Self Locator was used. In the first
game the goalkeeper several times stood too far behind the goalposts to see the
landmarks correct. With the completion and introduction of the GT2004 Self Lo-
cator, this problem vanished. Another task was to improve on the reflex behavior.
The reflexes help the goalkeeper to react to fast incoming balls. The robot had to
quickly spread its legs for a short time to intercept balls, which would else roll into
the goal. The reflex behavior worked in the game but showed space for improve-
ments concerning optimal timing. The third task of the goalkeeper behavior was its
general behavior. The robot showed weaknesses in clearing the ball in front of the
goal. Optimal timing was the main issue here as well.

Round Robin

For the GermanTeam the tournament started with a major game against the former world
champion rUNSWift. After the first half, which was overshadowed by technical problems
on both sides, the Australian team led with 2:1 goals. During halftime the problems were
solved and the GermanTeam won with 4:2 goals after a tense second half.
In the second game the GermanTeam met Team Chaos and defeated it with 13:0 goals.
The third game was against the winner of the Japan Open 2004: Asura. The game was
expected to be as challenging as the first game against rUNSWift, but the opposing robots
were no match for the GermanTeam. The game ended 6:1 for GermanTeam.
The GermanTeam defeated Georgia Tech Yellow Jackets in the fourth game with 12:0
goals. The American team showed an overall poor performance and gave up after the
first half. The tournament officials ruled to count the second half as the first one, ac-
cording to official tournament rules. So, the final score of this game was 12:0 for the
GermanTeam.
The last game of the group was against the Japanese team Baby Tigers and the German-
Team won with 7:0 goals. All games of Round Robin had been won by the GermanTeam
and the Germans showed with 42:3 goals the best performance of all teams.

Group A Group B Group C Group D
1. Upennalizers 1. Nubots 1. UTS Unleashed! 1. GermanTeam
2. UT Austin Villa 2. Hamburg DogBots 2. CMPack’04 2. rUNSWift
3. ARAIBO 3. Jollie Pochie 3. FC Portus 3. ASURA
4. Les 3 Mousquetaires 4. UW Huskies 4. Dutch Aibo Team 4. Baby Tigers
5. UChile 1 5. SPQR 5. Mi-Pal 5. Georgia Tech
- 6. Metrobots 6. TecRAMS-Mexico 6. Team Chaos

Table 7.2: The results after Round Robin of the Four-Legged-League of RoboCup 2004
in Lisbon. Highlighted teams were qualified for the Quarter-Final.

Quarter-Final and Semi-Final

As the winner of Group D the GermanTeam had to play against the second of Group
C, CM Pack’04 (see 7.2). This game was considered as a chance for revenge for the

CHAPTER 7. COMPETITIONS 81

quarter final of the RoboCup 2003 in Padova. In that match, the americans stopped the
GermanTeam after a tense thirty minute long penalty shootout. This game was different,
though. The GermanTeam was clearly superior and the game ended 9:0 for the Germans.
The GermanTeam attended the semi-final of the RoboCup competition for the first time
in their third RoboCup participation. The main goal of the GermanTeam was achieved
(see 7.3).
The semi-final against the Australian team Nubots began tight as expected. The Nubots
got early in the lead scoring the 1:0, but after this shock the GermanTeam behavior showed
its strength. The offensively playing robots turned the game and the GermanTeam got
soon in the lead. The semi-final ended 9:2 for the GermanTeam and earned respect from
the opponent UTS Unleashed! for the upcoming final (see 7.4).

Upennalizers 4:1 Hamburg DogBots
UTS Unleashed! 9:1 rUNSWift
Nubots 6:5 UT Austin Villa
GermanTeam 9:0 CM Pack’04

Table 7.3: The results of the Quarter-Final of the Four-Legged-League of RoboCup 2004
in Lisbon. Highlighted teams were qualified for the Semi-Final.

Upennalizers 1:5 UTS Unleashed!
Nubots 2:9 GermanTeam

Table 7.4: The results of the Semi-Final of the Four-Legged-League of RoboCup 2004 in
Lisbon. Highlighted teams were qualified for the Final.

Final

As all participants of the RoboCup Four-legged league agreed, the final was held between
the two best teams of the tournament. The Australian Team UTS Unleashed! was the
winner of the AustralianOpen 2004 and like the GermanTeam winner of their group in
Round Robin. Both teams were undefeated in this tournament, both teams led the game
statistics, most goals scored and the goals scored/conceded ratio. Like in the semi-final the
Australian team got in the lead with 1:0. Just as in the semi-final the GermanTeam could
equalize the score. This game developed into the most exciting game of the championship,
as UTS Unleashed! got in the lead again with 2:1. Just before halftime the Germans scored
and the game was even again. The tight score provided tension for the second half. In this
half the Germans got a better start than the Australians. For the first time of this game
the GermanTeam got in the lead with 3:2. The robots of UTS Unleashed! failed several
times against the German goalkeeper and the German robots scored again. After this
4:2 the Germans got several chances for the 5:2, but they failed. The Australian defence
proved their skill by good positioning. With an effective pass-play, which they already
showed in their demonstration for the OpenChallenge, they started the kick to the 4:3.
The German lead was decreased to one goal, but the robots of the GermanTeam quickly
retaliated and scored again for the final 5:3. The last minutes showed no advantage for
any team. As the game ended, the GermanTeam became World Champion 2004 of the
RoboCup (see 7.5 on the next page, 7.6 on the following page and 7.1 on the next page).

CHAPTER 7. COMPETITIONS 82

Upennalizers 4:5 Nubots

Table 7.5: The result of the match for third place of the Four-Legged-League of RoboCup
2004 in Lisbon.

UTS Unleashed! 3:5 GermanTeam

Table 7.6: The result of the Final of the Four-Legged-League of RoboCup 2004 in Lisbon.
The GermanTeam won the World Championship.

Figure 7.1: GermanTeam group picture after the victory in Lisbon

7.3.2 Open Challenge

Next to the soccer competitions in the Sony 4-legged Robot League the teams competed
also in some technical challenges. One of these challenges was the newly introduced open
challenge which was intended to enable the teams to present and demonstrate parts of
their research in a creative and entertaining way.
The university of Dortmund was responsible for the contribution to the open challenge
for the GermanTeam. We decided to create a scenario which would demonstrate our
research on cooperative behavior and came up with the following idea: one of our robots
should score a goal with a ball from the Mid-Size League of RoboCup. To accomplish this
task, the robot has to cooperate with four more robots of our team and has to transform
thereby into a virtual Mid-Size League robot.
For this transformation we built a cart with rails at the sides and a ramp to climb on it.
The main robot stays on the top of the cart, meanwhile four other robots were staying
at the sides of the cart biting the rails. In this manner we literally visualized the virtual
robot metaphor used by us so far.

CHAPTER 7. COMPETITIONS 83

Figure 7.2: The Open Challenge contribution of the german team: the four robots moving
the wagon away from the ramp, controlled by the robot on top of the wagon.

The robot staying on the top of the cart localized itself, searched for the orange ball and
generated the walking requests for the four cart-moving robots. These robots were not
able to localize themselves since they were looking directly towards the sides of the cart.
In this situation they were simply representing actuators of the main robot.
Almost every team in Lisbon which saw this demonstration was truly impressed and
entertained. Accordingly we achieved the first place in the open challenge competition by
a great margin.

Details on the implementation of the Open Challenge

Our Open Challenge approach can be divided into 5 sub-tasks for the robots:

1. walk to the starting positions

2. climb the ramp

3. bite the cart

4. approach close to the ball with the wagon

5. kick the ball

Each of these tasks can be performed as an autonomous part. At any time, every robot
in the team is fulfilling one of these tasks or doing nothing, in case it is waiting for other

CHAPTER 7. COMPETITIONS 84

Figure 7.3: A diagram of the forces that can be detected by the acceleration-sensors of
the robot to gather information about its rotation

robots to accomplish their own job.
The first task was quite easy to implement, although there were some things to consider
carefully, like self-location on a field with a wagon (which obstructs the robots’ view) on
it and walking to a certain position under wagon-avoidance.
It was neccesary to develop a new walking gait for the robot that has to climb the ramp
(see 3.3.1 on page 13 for details on this development). To keep the direction on the ramp,
we used the information about the red line on the ramp (see 4.4 on page 46 for details).
To detect if the robot is still on the ramp or has already reached the top of the wagon,
we used the acceleration-sensors of the ERS-7 (4.4 on page 46 shows a diagram how this
works).

Because this sensor suffers not only from noisy data, but from a complete different value
range on different robots, we developed a kind of learning while approaching the ramp.
As long as the robot has not yet reached the ramp, it is sure that it is standing on a
horizontal surface, so we can use the acceleration-sensor’s data in this phase to calculate
a reference value which can be used to detect the different acceleration on the ramp.
The main work to find the bite-marks was done by the RIP imageprocessor, like described
in 4.4 on page 46. Apart from that, we had to develop new movements to bite the desired
mark. To do so, we developed two new head controls (one with an open mouth, one with
an closed mouth but with quite little force, to spare the robots motors). To get better
information about the distance to the wagon, we used the input from the psd-sensor in
the robots head (4.4 on page 46 shows further details on this).

These all together, combined with a slower walking speed, led to a good solution to bite
the rails. To move the wagon, we had to map the information about the ball, retrieved
only by the robot standing on the wagon, into walking parameters for the robots that
move the wagon. This was done by some simple vector calculations. To stabilize the
robot moving the wagon, we implemented a local feedback-loop. This loop just looked
for the rotation of the head and triggered rotating movements of the robot to keep the
angle between rail and robot-head in a small range around 90 degrees.

CHAPTER 7. COMPETITIONS 85

Figure 7.4: Detecting the distance to the wagon with the psd-sensors

If a robot lost contact to the rail, the whole virtual robot would switch back into task
three, until the robot has bitten the rail again. After the wagon reaches the ball, the
robot on the wagon has to kick it toward the goal. To achieve this, we developed two
different movements: one to walk till the end of the wagon, and another to kick the ball.
While the kicking was quite easy to develop, the walking movement was kind of tricky,
because it is hard to detect the edge of the wagon. So we decided to use a movement
that brings the robot to the wagons end, but then lies quite stable on this edge, even if
another walking-movement is triggered.
The coordination among the five robots of the open challenge was done entirely with
DTT. As described in detail in 5.1 (on page 49), DTT enabled us to develop and test the
aforementioned parts of the open challenge independently and in parallel. This gave us
the chance to benefit from our man-power and to be able to create this quite complex
challenge in a relatively short time. Especially the fail-safe behavior, e.g. when a robot
lost contact to his rail, emerged implicitly from DTT and didn’t need to be implemented
directly. As every robot reports his status through the option ratings for each part of the
open challenge, at any time the best suited tactic entry is chosen accordingly. In this case
best suited means the tactic entry of the apropriate part of the open challenge.

CHAPTER 7. COMPETITIONS 86

Figure 7.5: If the wagon moves to one side, we use a local feedback-loop to stabilize the
robots head-orientation. It is not usefull to rotate the head, because the robot will then
lose the contact to the wagon, but to rotate the body, strafe and walk forward.

Chapter 8

Side Projects

8.1 World State Player

It turned out in the project group, that the development of an efficient behavior is an
important and substantial part of the work. Next to evolving new ideas for the behavior
the implementation requires extensive tests and error analyses. Specially the analysis of
the results of the tests is difficult to manage, because of the many sources of errors which
the behavior offers. In addition to errors in strategy or general errors in the code the
behavior cause problems with wrong sensor interpretation. For the development of an
efficient behavior it is important to verify the correct evaluation of sensor data the Aibo
gets during tests. A wrong analysis can pretend or cover bugs in the strategy. According
to this problem it would help the developer to see all important sensor and world data
together on the screen. The comparison of these data enables the estimation of possible
causes of errors in the behavior. A correct interpretation of the sensor and world data
eliminates one of the possible sources of errors.

Robot Control provides the Log-Player. The Log-Player supports recording of logfiles on
the Aibo and playing them in Robot Control. Every sensor and world data of the robot
can be stored in a logfile and for this reason be used for debugging. This debug-data is
called on Robot Control with debug keys. The Log-Player is limited to record and play
the logfile of the current selected robot instead of all playing robots. This is satisfactory
for example to calibrate a new colortable, but according to the description above it is
inadequate for debugging a new behavior.

For behavior debugging an enhanced logfile player is needed which maintains the support
of up to four logfiles. This extension would cover a whole team which is needed for
developing the teambehavior. The addition of support for the four opponent Aibos is
not needed because the development of a new behavior is tested in games against the
old tested behavior of last year. Furthermore, comparison with reality is helpful for the
developer. It helps finding errors in the world model. In some occasions all Aibos suffer
from the same error and without an image of the real world model these errors would be
undiscoverable. According to this it is necessary to have a video of the testgame recorded.
Helpful is a ceiling camera which provides an overview of the game. Additionally the world
model data in Robot Control is shown from a similar point of view. The comparison with
a ceiling camera would be much easier than with a normal camera which only films parts
of the playing field.

The project group attended to this problem and developed the World State Player. The

87

CHAPTER 8. SIDE PROJECTS 88

World State Player is an enhancement of the Log-Player. The World State Player supports
the recording and playing of up to four different logfiles. In addition the play back of a
video and a merged world state of all four logfiles is maintained. The merged world state
is helpful for the comparison with the video. It provides the same view as a ceiling camera
and shows all world model data on the field, but many times this field is too complex.
According to this each logfile is also shown separately on a separate field in the window.
The World State Player provides a toolbar with additional functions. Next to playing and
recording it supports the skipping of frames in the logfiles and video and a slidebar for
direct point access in the logfile. Next to the toolbar four textfields contain the current
time stamp of each logfile.

8.2 Demo Stick

Nowadays science consists not only of research and publications, but also of explaining
and legitimating itself towards the public. Additionally and in correlation to those pub-
lic relations young people have to be enthused for science to build the next generation
of scientists. Therefore we have to present our research topics in a more attractive and
pictorial way, abstracting from scientific complexity and details and using more or less
self explaining demonstrations. These were the reasons that led us to the creation of the
demo stick1. It is a non interactive program which shows some ball handling abilities of
our robots. The space needed by the robot when executing the demo stick is rather small,
thus it can be run on educational events, press conferences, exhibitions, etc.
As an eye-catcher the robot is able to put the ball on his back and to juggle with the ball
in this position. Since all the spectacular movements are localized it makes it easy for
photographers to get some good shots for their newspapers or tv-reports.
Of course a predefined sequence of movements, even if it is quite spectacular, isn´t so-
phisticated science. But pictures which illustrate headlines of our field of research, like
teaching robots to play soccer, can help to get the attention needed to gather interest in
the public.

8.3 Walking on a Leash

Another nice demonstration of our research is a robot walking on a leash. Actually the
used technique is a spin-off of the open challenge. In the challenge we used a kind of
feedback loop to stabilize the head position of a robot while biting into the rail of the cart
and moving. Used for walking on a leash the dog starts turning when the leash and thus
the head is moved to one side. Additionally we extended this feedback loop by a vertical
component which is used to control the walking speed of the robot. As the head is lifted
by pulling the leash the robot increases its speed and if the leash is released and thus the
head is lowered the robot decreases its speed again.
Like the demo stick walking on a leash is a beneficial demonstration to draw someone’s
attention to the field of robotic research and especially to encourage children to focus on
robotics and science in general.

1a stick is the memory media of our robots

References

[1] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab, 2004.
http://www.vision.caltech.edu/bouguetj/calib doc/.

[2] J.E. Bresenham. Algorithm for Computer Control of Digital Plotter. IBM Systems
Journal, Vol. 4, No. 1, April 1965.

[3] D.C. Brown. Lens Distortion for Close-Range Photogrammetry. Photometric Engi-
neering, pages 855-866, Vol. 37, No. 8, 1971.

[4] J. Bruce, Tucker Balch, and Maria Manuela Veloso. Fast and inexpensive color
image segmentation for interactive robots. In Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’00), volume 3,
pages 2061 – 2066, October 2000.

[5] H.D. Burkhard, R. Brunn, I. Dahm, U. Düffert, K. Engel, D. Göhring, J. Hoffmann,
M. Jüngel, M. Kallnik, M. Kunz, M. Lötzsch, A. Osterhues, S. Petters, M. Risler,
C. Schumann, M. Stelzer, O. von Stryk, T. Röfer, M. Wachter, and J. Ziegler. Ger-

manTeam 2003 - Team report.
http://www.robocup.de/germanteam/GT2003.pdf.

[6] J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, November 1986.

[7] T.A. Clarke and J.G. Fryer. The Development of Camera Calibration Methods and

Models. Photogrammetric Record, 16(91): pages 51-66, April 1998.

[8] Sebastian Deutsch, Thomas Dickhöfer, Wenchuan Ding, Kai Engel, Piotr Kudlacik,
Andre Osterhues, Jan Prünte, Andreas Reiß, Sebastian Schmidt, Christian Thiel,
and Michael Wachter. Sony Legged League: Entwicklung von verteilten Algorithmen

zur effizienten Kontrolle von autonomen Fußballrobotern.
http://www.m-wachter.de/endbericht.pdf.

[9] Robert B. Fisher. CVonline: The Evolving, Distributed, Non-Proprietary, On-Line

Compendium of Computer Vision, 2004.

[10] James D. Foley and Andries van Dam. Fundamentals of Interactive Computer Graph-

ics. Addison-Wesley, 1982.

[11] Paul S. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master’s
thesis, University of California, Berkeley, CA94720, June 1989.
http://www-2.cs.cmu.edu/∼ph/texfund/texfund.pdf.

[12] Martin Lötzsch. xabsl - The Extensible Agent Behavior Specification Language.
http://www.ki.informatik.hu-berlin.de/XABSL.

89

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.robocup.de/germanteam/GT2003.pdf
http://www.m-wachter.de/endbericht.pdf
http://www-2.cs.cmu.edu/~ph/texfund/texfund.pdf
http://www.ki.informatik.hu-berlin.de/XABSL

REFERENCES 90

[13] Ingo Rechenberg. Evolutionsstrategie ’94. Frommann–Holzboog, Stuttgart, 1994.

[14] Intel Research. IPL – Image Processing Library, 2004.
http://developer.intel.com/software/products/ipp/.

[15] Intel Research. OpenCV – Open Source Computer Vision Library, 2004.
http://www.intel.com/research/mrl/research/opencv/.

[16] Ingo Wegener. Grundvorlesung Datenstrukturen, 1992.

View publication statsView publication stats

http://developer.intel.com/software/products/ipp/
http://www.intel.com/research/mrl/research/opencv/
https://www.researchgate.net/publication/262067288

	Title
	Contents
	Introduction
	Overview of the RoboCup
	Overview of the project group

	Basics
	Rules of the games
	API and operating system
	Aperios
	Open-R
	GT2004

	GermanTeam software architecture
	Process framework
	Module concept

	RobotControl
	Main focus of the GermanTeam

	Tuning for the ERS-7
	New hardware
	New SDK
	Software changes
	Development of a new walking gait
	New kicks and MOFs

	Image Processing
	Motivation
	Color Correction
	Supporting Color Tables

	EdgeDetection
	Raster Image Processor
	Architecture
	Clustering
	Ball Detection
	Beacon Detection
	Goal Detection
	Line detection
	Obstacle detection
	Opponent Detection
	Other Approaches to Opponent Detection

	Image Processing for the Open Challenge
	Climbing the ramp
	Platform Beacon Detection

	Resource Scheduling
	Dynamic Team Tactics
	Overview on Dynamic Team Tactics
	Files, Folders and Implementation
	Working with DTT
	The inner workings of option ratings

	Scheduler Module Integration
	Senso - a sample application
	Conclusion

	Ceiling Camera
	Lens distortion correction
	Reduced distortion models

	Perspective correction
	Implementation
	User interface
	Towards an automated oracle

	Competitions
	German Open 2004
	Opens 2004
	RoboCup 2004
	WE ARE THE CHAMPIONS!!
	Open Challenge

	Side Projects
	World State Player
	Demo Stick
	Walking on a Leash

	References

