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Abstract: In this article, the design of a global control architecture for teams of
soccer playing robots is presented. Therefore, the metaphor of a ”virtual robot” is
introduced. This meta-computing based concept of a virtual robot - a collection of a
dynamically varying number of robots - is used in order to offer a simple method to
share sensor information and processing power efficiently in a team of autonomous
walking robots, additionally opening the possibility of ”call-for-action” requests.
Sensor fusion allows for the calculation of a coherent global world model which
in turn will be processed locally to get optimal action sequences of the robots in
the team. Coordination of the robots is achieved by local schedulers which use the
global world model as a basis for action selection.

Keywords: Control, Sensor Integration, Legged Robots, Multiple Vehicle
Systems, Networks of Autonomous Vehicles

1. INTRODUCTION

Since 1999, the SONY Legged League is an official
RoboCup League and the first one with walking
robots 2 . Each team consists of several four legged
robots – SONY ERS-7, ERS-210 or ERS-210
supercore. The specific situation in the Legged
League results in a special behavior-control:

1) It is not allowed to add nor change hardware
components. Only one type of robot is allowed
on the playing field. Thus, the robots of one
team are almost identical. (Participants, 2002).
It is not possible the scale processing-power or

1 Partially supported by the Deutsche Forschungsgemein-
schaft (DFG) under grant Ba 1024/11-1
2 http://www.robocup.org

memory capacity to the users needs. Therefore,
the ressources are under massive load. Even
the lately introduced super-core didn’t solve this
problem. A teame-wide ressource sharing as done
in meta-computer networks is a capable solution
to handle jobs that are to big for one computing
unit (Hamscher et al., 2000; Schwiegelshohn and
Yahyapour, 2000).

2) The ability to walk influences alle modules
that depend on locomotion directly or indi-
rectly. Exemplary, a odometry-data-based navi-
gation (Chenavier and Crowley, 1992; Borenstein
et al., 1997), has to deal with massive prob-
lems like ¡schlupf¿, ¡kippeln¿, and ¡verhakeln¿.
Even Localization does mainly depend on vision-
systems quality (Fox et al., 1999; Fox, 1998; Utz



Fig. 1. Sony’s ERS-7. This 20 degree-of-freedom,
fully autonomous four-legged robot is used in
RoboCup robot soccer games.

et al., 2002). A low reliabilty of the observed
data worsens the accuracy of localization. The
consideration of more than one robots observa-
tion does improve the world models quality sig-
nificantly (Dahm and Ziegler, 2002; Stroupe et
al., 2001; Stroupe et al., 2000).

3) Participants of the League are encouraged to
freely distribute their software-code. This makes
sense as the robot components are identical.
Therefore, the participating teams will show a
comparable performance in the next future as
good methods and skills of winning teams can
be captured (e.g. walking engine (Uther et al.,
2002)). In future, the individual skills of the robots
can be assumed to be similar/equal. The use of
cooperating methods and algorithms is traded as
the next main performance enhancement. REF
In the SONY League, we expect this to be a way
to perform coordinated team-actions.

All these problems can be solved by a global
ressourcemanagement and a job Scheduler. The
situation is highly comparable to a Metacomput-
ing project, whereas each robot is a ressource of
the grid (C.Bitten and Yahyapour, 2000). More-
over, the Real-Time constraint is a hard side-
constraint in Robot Soccer. Robots can demand
ressources and provide other ressources and in-
formation at the same time. Scheduling strate-
gies and ressource management rules must reflect
those constraints.

2. THE ”VIRTUAL ROBOT” METAPHOR

A collection of a dynamically varying number of
robots is called a ”virtual robot” (VR). A VR con-
tains all available ressources and information of
all individual robots 3 and a special management
architecture allows to access all elements of the
VR as if they were parts of a single robot.

3 A VR is not necessarily restricted to consist only of
robots of a single type as in the four-legged league. It
is possible to integrate different robot architecures into a
single VR.

To use this metaphor has some important advan-
tages: (i) it allows to control all robots coherently.
This is in contrast to current techniques, which
achieve a purposeful team behavior only with mu-
tually coordinated actions. (ii) A ressource man-
agement system can use all capabilities of the
robots efficiently by calculating an optimal load
balancing. This scheduler can resort to well known
algorithms in the area of meta-comptuting. (iii)
It is user independent, i.e. it is not necessary
for the system designer to assign a specific robot
to specific tasks in advance 4 . (iv) The concept
does not rely on a fixed architecture of the VR,
instead is designed to handle a variable number of
heterogeneous devices.

The main problem of controlling a VR is the iden-
tification and allocation of available ressources,
the splitting of complex, high-level tasks into
different smaller problems and the subsequent
assignment of these small tasks to appropriate
ressources.

2.1 Ressources in a team of robots

All available sensors, actuators, and processors of
all robots that are part of the VR will be con-
sidered as ressources. A VR consisting of several
different robots has a multitude of different sen-
sors, processors and actuators. If the configuration
of the VR changes, the composition of ressources
changes, too. Every change (e.g. addition/deletion
of robots due to decisions of a referee) therefore
has to communicated by its causer to the exist-
ing VR via a well defined registration/check out
protocoll.

2.2 Worldmodel

All local information is integrated into one global
world model by sensor fusion techniques. The
reliability of local informations can be enhanced
by cross-validation. This reduces the impact of
erroneous sensor data.

The world model reflects the VR’s view of the
actual situation and is the basis for its action
selection mechanism.

2.3 Atomic actions - Tasks

In contrast to other grid-computing applications,
where the character of distributed processes is
potentially infinite and depends on the application
itself, the set of different tasks that have to be
solved in robot soccer in order to get a coherent

4 This role mechanism is commonly used in team robotics.



team behavior can be limited. This has conse-
quences for the scheduling algorithm.

There are three different types of tasks which are
specific for robot soccer applications:

2.3.1. Sensor tasks Sensor tasks are scheduled
to a robot if the VR is in need of information that
can be obtained by the sensory system of that
robot. An example for a sensor task is to examine
the position of the ball, to calculate the position,
and send the information along with a validity
value.

2.3.2. Processing tasks A processing task re-
quires a computation. If the VR consists of robots
with different CPUs, a complex computation can
be scheduled to a robot with a more powerful
CPU. An example might be the color segmenta-
tion of a high-resolution color image which can
not be done in realtime by other robots.

2.3.3. Do this: Action tasks Action tasks are
the main element in which the concept of a VR
differs from an ordinary grid-computer. The pos-
sibility to do something allows the VR to directly
manipulate its environment, which in turn has an
impact on the dynamics as a whole. The fact that
a VR consists of several independent autonomous
robots entails the problem of how to do something,
because the redundancy of actuators makes it
possible to achieve a certain aim in different ways.
A human can pick up a ball with its right or with
its left hand. Which hand to use depends on what
the further plans with the ball are. If it just wants
to look at it, the choice of the hand does not really
matter. If the goal is to throw the ball far away,
then the human should pick it up with its stronger
arm, in order to reach the goal sufficiently.

In this context, an action is defined as a small
sequence of directed movements of a robot. A typ-
ical example is a movement to a certain position
given in 2D-world coordinates (x, y). This coarse
grained definition of actions allows to compose
complex team behaviors without goinig ttoo much
into the details of robots hardware programming.
In section 4, more examples of actions typical for
robot soccer are presented.

3. SCHEDULING

Having described the different tasks, it is now
the job of the scheduling mechanisms, to coor-
dinate, which physical robot of the VR has to
perform which task at a given time. Using a
simple client/server approach as the distribution
mechanism would lead to complicated error han-
dling procedures due to possible communication

failures between the robots.Therefore we designed
a scheduling mechanism that just needs some
broadcasted data and which lets every robot de-
cide for itself locally, which task to perform.

In order to achieve a coherent behavior of the
whole team, we present the concept of ”task
rating”.

3.1 Task Rating

Basically, the task rating is a function fr mapping
the worldmodel w (the robots view of the current
situation) and a specific task t to R+:

fr(t, w) −→ R+. (1)

The return value of this function represents how
”good” a robot is able to perform the specified
task. The function fr is evaluated locally on
every robot (thus depending on robot specific
capabilbities) and the return value is zero, if the
robot is by no means able to solve that task in the
actual situation.

For example, if the task is ”move(x, y)”, robots
that cannot get there, return f(move(x, y), w) = 0
and a robot that can get to (x, y), but its own
position is far away from (x, y) returns a quite
small value of f . A robot that is already close to
(x, y), returns a high value of f .

If the list of all tasks (sensor, processing, and
action tasks) is limited and known, every robot
can calculate the value of fr qfor every task in a
certain situation. After a broadcasting of this task
rating, we assume that every robot has a complete
list of task ratings of all the other members of the
VR.

3.2 Configurations

A configuration c is a collection of tasks or task-
classes 5 that are reasonably to be performed at
the same time by different robots in order to
get a coordinated and purposeful team behavior.
The number of tasks in a configuration c is in
[1, n], with n indicating the number of robots in a
team. Obviously, it has to be specified which tasks
belong to a which task-class.

Further on, every task or task-class in a configu-
ration c has a special value wc(task) that presents
how important the special task is to reach the
VR’s aim.

5 A task class is a symbol for tasks whose realization
depend on which robot of the VR executes a task of that
class. An example is the kick()-task that can be realized
differently (left foreleg, right hindleg, head, etc) depending
on the actual situation of the game. The task rating of a
task class is the maximum rating of all tasks within the
task class.



Finally, every configuration ci ∈ C, where C is
the set of all configurations and | C |= m, has
a value uci that represents how important the
whole configurationci is to reach the VR’s aim.
Every robot in the system has the same set C of
configurations.

Every ci defines a vector vci(C) of values which
modify the ucj , j 6= i, values of other configura-
tions. This makes it possible to change the weights
of configurations such that in subsequent steps
evaluations are biased depending on the actual
decision.

Additionally, the whole system is prevented from
being trapped in a single configuration ci if the
weight ucj

of another configuration is incremented
by repeated choices of ci.

3.3 The scheduling algorithm

The scheduling algorithm realizes a function that
uses all the data described above to calculate a
matching from robots and tasks with maximum
score. Because there are n! permutations to assign
the tasks in ci to the n robots of the team,
the si values have to be calculated for every
permutation.

The basic score s(ci) of a configuration ci is
defined as

s(ci) = max[uci

∑
t∈ci

fr(w, t)wci(t)|r = 1, ..., n](2)

We define S as S = (sc1 , . . . , scm)T with

The scores si ∈ S can additionally be modified
by multiplication with one ore more vectors x of
weights. An example is the weighting of configu-
rations supporting offensive play. The respective
elements of x will have values greater than one.
The final scores are computed with

S′ = S · vci · (x1, . . . , xm), (3)

where ci is the last selected configuration. The
configuration with the maximum s-value will be
selected and the tasks of this configuration are as-
signed to the robots according to the permutation
which yielded the maximum s(ci) value in eq. (2).
In Fig. 2, a schematic view of the scheduling
mechanism is shown.

3.4 Broadcast of results

We have seen that all data that needs to be
exchanged between the robots is the task-rating
for all tasks. We expect this to be a quite small
amount of data (like one UDP-packet), so it is no
problem to broadcast this data often. Each task-
rating-packet has a time-stamp, which enables the

Fig. 2. Schematic view of the scheduling macha-
nism.

scheduler to give a lower weight to older task-
ratings. This makes it possible to handle com-
munication failures or synchronisation problems,
because the important tasks are implicitly sched-
uled to robots, which were known to be reachable
a short time ago: configurations get high scores
if high task weights w(t) coincide with high task
ratings fr(w, t). It is unlikely that important tasks
are scheduled to either robots with small task
ratings or robots whose ratings are old, because
of the ageing of task ratings.

This means that if some robots are unavailable,
the remaining robots perform the high weighted
tasks in the according configuration. In case of a
complete communication breakdown, each robot
just executes the task with the highest fr(w, t)
value.

There is a wide range of possibilities to extend
this scheduling mechanism.

3.4.0.1. Learning Scheduler It is possible in
principle to learn good configurations at runtime.
During a robocup football game, for example,
the u(c) values of the past configurations can be
modified (increased), if a goal was scored. For
coming scheduling events, these configurations
are slightly preferred. The u(c) values can be
decreased, if a series of configurations led to a
oppnonent goal.

3.4.0.2. Global Tendencies You can express
global tendencies with weight vectors. The foot-
ball example again: You can favor more offensive
or defensive team play by increasing or decreasing
the x(c)-values which modify the scores sc of those
configurations which supports offensive playing or
defensive playing respectively.

3.4.0.3. Intermediate Objectives If the VR’s
aim is too complex to be defined by one big
configuration-list, it is a good solution to split



the complex aim into smaller intermediate objec-
tives. For each of this intermediate objectives a
configuration-list can be designed separately and
by a worldmodel-dependend rating of these ob-
jectives it is possible to weight the x(c)-values
which modify the scores sc of the appropriate
configurations, so that the intermediate objectives
can be processed consecutively to finally fulfill the
complex aim of the VR.

4. APPLICATION

A simple example may clarify the scheduling
mechanism. It assumes a robot soccer application
with four autonomous legged robots. The com-
plete list of task is

t1: go forward with ball
t2: go forward
t3: withdraw
t4: stay in goal
t5: score a goal

The list of configurations C is defined as

c1 =





go forward with ball , 5
go forward , 3
withdraw , 0.3
stay in goal , 0.1





, uc1 = 1.0

c2 =





score a goal , 25
go forward , 1
withdraw , 2
stay in goal , 0.5





, uc2 = 1.0. (4)

Configuration c1 suggests a team behavior that
pushes the ball forward, along with a supporting
robot, whereas configuration c2 favors a kick to
the goal, while, at the same time, another robot
should withdraw in order to block a counter of the
opponent in case of a failing kick. The task-ratings
in Tab. 1 have been calculated by the robots,
assuming that robot 2 has the ball and robot 4
is the goalkeeper. Robot 1 and 3 are somewhere
in the middle of the field.

Table 1. Task ratings of all five tasks
computed by all four robots in the team.

Robot 1 Robot 2 Robot 3 Robot 4

t1 0 10 0 0
t2 9 9 4 3
t3 3 3 6 6
t4 0 0 0 10
t5 0 2 0 0

According to eq. (2), the maximum basic score for
configuration c1 is

s(c1) = 10 · 5 + 9 · 3 + 6 · 0.3 + 10 · 0.1 = 79.8 (5)

for the following mapping

t1 −→ robot 2

t2 −→ robot 1

t3 −→ robot 3

t4 −→ robot 4. (6)

Configuration c2 gets a basic score of

s(c2) = 2 · 25 + 9 · 1 + 6 · 2 + 10 · 0.5 = 76.0 (7)

for the same mapping. This results in a decision
for configuration c1. Since every robot has made
the calculations, the scheduling of the tasks to the
robots is clear.

After some time, the task ratings change (see
Tab. 2).

Table 2. New task ratings of all five
tasks computed by all four robots in the

team.

Robot 1 Robot 2 Robot 3 Robot 4

t1 0 10 0 0
t2 9 9 4 3
t3 4 3 4 6
t4 0 0 0 8
t5 0 5 0 0

The configurations now get basic scores of

sc1 = 10 · 5 + 9 · 3 + 4 · 0.3 + 10 · 0.1 = 79.2

sc2 = 5 · 25 + 9 · 1 + 6 · 2 + 0 · 0.5 = 146.0 (8)

for the same mapping (see eq. (6)). Configuration
c2 gets the highest score, so that the team be-
havior changes from c1 (forward motion) to c2

(attempt to score a goal). In this special case,
another mapping of tasks to robots is possible
(t1 → robot 2, t2 → robot 1, t3 → robot 4, t4 →
robot 3 gets the same score. Due to the fact that
identical schedulers are executed on the robots,
the team will come to the same conclusion, so
no extra handling of this situations has to be
implemented.

5. CONCLUSION

ACKNOWLEDGEMENT

The authors wish to thank the students involved
in this project: Claudius Rink, Andreas Ross-
bacher, Frank Rossmann, Bernd Schmidt,
Pascal, Jrn Hamerla, Manuel, Hyung-Won
Koh, Damien, Christop Richter, Carsten
Schuman, Norbert. We additionally thank our
sponsors Microsoft Corp. and Lachmann & Rink
for financial support.

REFERENCES

Borenstein, J., H. Everett, L. Feng and D. Wehe
(1997). Mobile robot positioning: Sensors



and techniques. Journal of Robotic Systems
14(4), 231–249.

C.Bitten, J. Gehring,
U. Schwiegelshohn and R. Yahyapour (2000).
The NRW-Metacomputer. Building Blocks
for A Worldwide Computational Grid. In: In-
ternational Parallel and Distributed Process-
ing Symposium 2000.

Chenavier, F. and J. Crowley (1992). Position
estimation for a mobile robot using vision
and odometry. In: Proceedings of the IEEE
Int. Conference on Robotics and Automa-
tion (ICRA92). IEEE Press,Piscataway, NJ.
pp. 2588–2593.

Dahm, Ingo and Jens Ziegler (2002). Using ar-
tificial neural networks to construct a meta-
model for the evolution of gait patterns of
four-legged walking robots. In: Proc. Fifth
Int’l Conf. Climbing and Walking Robots and
the Support Technologies for Mobile Machines
(CLAWAR 2002) (P. Bidaud and F. Ben
Amar, Eds.). Professional Engineering Publ..
Bury St. Edmunds, U.K.. pp. 825–832.

Fox, D. (1998). Markov Localization: A Proba-
bilistic Framework for Mobile Robot Local-
ization and Navigation. PhD thesis. Institute
of Computer Science III, University of Bonn.

Fox, D., W. Burgard, F. Dellaert and S. Thrun
(1999). Monte carlo localization: Efficient po-
sition estimation for mobile robots. In: Pro-
ceedings of AAAI’99. pp. 343–349.

Hamscher, V., U. Schwiegelshohn, A. Streit
and R. Yahyapour (2000). Evaluation of
Job-Scheduling Strategies for Grid Com-
puting. Lecture Notes in Computer Science
1971, 191–202.

Participants, Sony Legged League (2002). Sony
four legged robot football league rule book.
Technical report. Sony Legged League.

Schwiegelshohn, U. and R. Yahyapour (2000).
Fairness in parallel job scheduling.

Stroupe, A., M. Martin and T. Balch (2000).
Merging probabilistic observations for mobile
distributed sensing.

Stroupe, A., M. Martin and T. Balch (2001).
Distributed sensor fusion by for object po-
sition estimation by multi-robot systems.
In: Proceedings of the IEEE/RAS Interna-
tional Conference on Robotics and Automa-
tion (ICRA). IEEE Press, Piscataway, NJ.

Uther, W., S. Lenser, J. Bruce, M. Hock
and M. Veloso (2002). Cm-pack’01: Fast
legged robot walking, robust localization,
and team behaviors. In: RoboCup-2001: The
Fifth RoboCup Competitions and Conferences
(A. Birk, S. Coradeschi and S. Tadokoro,
Eds.). Springer Verlag, Berlin.

Utz, H., A. Neubeck,
G. Mayer and G. Kraetschmar (2002). Im-
proving vision-based self-localization. In: Pre-

Proceedings of the 6th international RoboCup
Symposium (G. A. Kaminka, P. U. Lima and
R. Rojas, Eds.). pp. 17–32.

View publication statsView publication stats

https://www.researchgate.net/publication/254244697

